Game Theory in Practice: Smackdown Meta-Strategy

Going into the final round of ESPN’s Stat Geek Smackdown, I found myself 4 points behind leader Stephen Ilardi, with only 7 points left on the table: 5 for picking the final series correctly, and a bonus 2 for also picking the correct number of games.  The bottom line being, the only way I could win is if the two of us picked opposite sides.  Thus, with Miami being a clear (though not insurmountable) favorite in the Finals, I picked Dallas.  As noted in the ESPN write-up”

“The Heat,” says Morris, “have a better record, home-court advantage, a better MOV [margin of victory], better SRS [simple rating system], more star power, more championship experience, and had a tougher road to the Finals. Plus Miami’s poor early-season performance can be fairly discounted, and it has important players back from injury. Thus, my model heavily favors Miami in five or six games.

But I’m sure Ilardi knows all this, so, since I’m playing to win, I’ll take Dallas. Of course, I’m gambling that Ilardi will play it safe and stick with Miami himself since I’m the only person close enough to catch him. If he assumes I will switch, he could also switch to Dallas and sew this thing up right now. Game-theoretically, there’s a mixed-strategy Nash equilibrium solution to the situation, but without knowing any more about the guy, I have to assume he’ll play it like most people would. If he’s tricky enough to level me, congrats.

Since I actually bothered to work out the equilibrium solution, I thought some of you might be interested in seeing it. Also, the situation is well-suited to illustrate a couple of practical points about how and when you should incorporate game-theoretic strategies in real life (or at least in real games).

Some Game Theory Basics

Certainly many of my readers are intimately familiar with game theory already (some probably much more than I am), but for those who are less so, I thought I should explain what a “mixed-strategy Nash equilibrium solution” is, before getting into the details on the Smackdown version (really, it’s not as complicated as it sounds).

A set of strategies and outcomes for a game is an “equilibrium” (often called a “Nash equilibrium”) if no player has any reason to deviate from it.  One of the most basic and most famous examples is the “prisoner’s dilemma” (I won’t get into the details, but if you’re not familiar with it already, you can read more at the link): the incentive structure of that game sets up an equilibrium where both prisoners rat on each other, even though it would be better for them overall if they both kept quiet.  “Rat/Rat” is an equilibrium because an individual deviating from it will only hurt themselves.  Bother prisoners staying silent is NOT an equilibrium, because either can improve their situation by switching strategies (note that games can also have multiple equilibriums, such as the “Which Side of the Road To Drive On” game: both “everybody drives on the left” and “everybody drives on the right” are perfectly good solutions).

But many games aren’t so simple.  Take “Rock-Paper-Scissors”:  If you pick “rock,” your opponent should pick “paper,” and if he picks “paper,” you should take “scissors,” and if you take “scissors,” he should take “rock,” etc, etc—at no point does the cycle stop with everyone happy.  Such games have equilibriums as well, but they involve “mixed” (as opposed to “pure”) strategies (trivia note: John Nash didn’t actually discover or invent the equilibrium named after him: his main contribution was proving that at least one existed for every game, using his own proposed definitions for “strategy,” “game,” etc).  Of course, the equilibrium solution to R-P-S is for each player to pick completely at random.

If you play the equilibrium strategy, it is impossible for opponents to gain any edge on you, and there is nothing they can do to improve their chances—even if they know exactly what you are going to do.  Thus, such a strategy is often called “unexploitable.”  The downside, however, is that you will also fail to punish your opponents for any “exploitable” strategies they may employ: For example, they can pick “rock” every time, and will win just as often.

The Smackdown Game

The situation between Ilardi and I going into our final Smackdown picks is just such a game: If Ilardi picked Miami, I should take Dallas, but if I picked Dallas, he should take Dallas, in which case I should take Miami, etc.  When you find yourself in one of these “loops,” generally it means that the equilibrium solution is a mixed strategy.

Again, the equilibrium solution is the set of strategies where neither of us has any incentive to deviate.  While finding such a thing may sound difficult in theory, for 2-player games it’s actually pretty simple intuitively, and only requires basic algebra to compute.

First, you start with one player, and find their “break-even” point: that is, the strategy their opponent would have to employ for them to be indifferent between their own strategic options.  In this case, this meant: How often would I have to pick Miami for Miami and Dallas to be equally good options for Ilardi, and vice versa.

So let’s formalize it a bit:  “EV” is the function “Expected Value.”  Let’s call Ilardi or I picking Miami “iM” and “bM,” and Ilardi or I picking Dallas “iD” and “bD,” respectively.   Ilardi will be indifferent between picking Miami and Dallas when the following is true:

EV(iM)=EV(iD)

Let’s say “WM” = the odds of the Heat winning the series.  So now we need to find EV(iM) in terms of bM and WM.  If Ilardi picks Miami, he wins every time I pick Miami, and every time Miami wins when I pick Dallas.  Thus his expected value for picking Miami is as follows:

EV(iM)=1*bM+WM*(1-bM)

When he picks Dallas, he wins every time I don’t pick Miami, and every time Miami loses when I do:

EV(iD)=1*(1-bM)+(1-WM)*bM

Setting these two equations equal to each other, the point of indifference can be expressed as follows:

1*bM+WM*(1-bM)=1*(1-bM)+(1-WM)*bM

Solving for bM, we get:

bM=(1-WM)

What this tells us is MY equilibrium strategy.  In other words, if I pick Miami exactly as often as we expect Miami to lose, it doesn’t matter whether Ilardi picks Miami or Dallas, he will win just as often either way.

Now, to find HIS equilibrium strategy, we repeat the process to find the point where I would be indifferent between picking Miami or Dallas:

EV(bM)=EV(bD)

EV(bM)=MW*(1-iM)

EV(bD)=(1-MW)*iM

MW*(1-iM)=(1-MW)*iM

iM=WM

In other words, if Ilardi picks Miami exactly as often as they are expected to win, it doesn’t matter which team I pick.

Note the elegance of the solution: Ilardi should pick each team exactly as often as they are expected to win, and I should pick each team exactly as often as they are expected to lose.  There are actually a lot of theorems and such that you’d learn in a Game Theory class that make identifying that kind of situation much easier, but I’m pretty rusty on that stuff myself.

So how often would each of us win in the equilibrium solution?  To find this, we can just solve any of the EV equations above, substituting the opposing player’s optimal strategy for the variable representing the same.  So let’s use the EV(iM) equation, substituting (1-WM) anywhere bM appears:

EV(iEq)=1*(1-WM)+WM*(1-(1-WM))

Simplify:

EV(iEq)=1 - WM +WM^2

Here’s a graph of the function:

Obviously, it doesn’t matter which team is favored: Ilardi’s edge is weakest when the series is a tossup, where he should win 75% of the time.  The bigger a favorite one team is, the bigger the leader’s advantage.

Now let’s Assume Miami was expected to win 63% of the time (approximately the consensus), the Nash Equilibrium strategy would give Ilardi a 76.7% chance of winning, which is obviously considerably better than the 63% chance that he ended up with by choosing Miami to my Dallas—so the actual picks were a favorable outcome for me. Of course, that’s not to say his decision was wrong from his perspective: Either of us could have other preferences that come into play—for example, we might intrinsically value picking the Finals correctly, or someone in my spot (though probably not me) might care more about securing their 2nd-place finish than about having a chance to overtake the leader, or Ilardi might want to avoid looking bad if he “outsmarted himself” by picking Dallas while I played straight-up and stuck with Miami.

But even assuming we both wanted to maximize our chances of winning the competition, picking Miami may still have been Ilardi’s best strategy given when he knew at the time, and it would have been a fairly common outcome if we had both played game-theoretically anyway.  Which brings me to the main purpose for this post:

A Little Meta-Strategy

In reality, neither of us played our equilibrium strategies.  I believed Ilardi would pick Miami more than 63% of the time, and thus the correct choice for me was to pick Dallas.  Assuming Ilardi believed I would pick Dallas less than 63% of the time, his best choice was to pick Miami.  Indeed, it might seem almost foolhardy to actually play a mixed strategy: what are the chances that your opponent ever actually makes a certain choice exactly 37% of the time?  Whatever your estimation, you should go with whichever gives you the better expected value, right?

This is a conundrum that should be familiar to any serious poker players out there. E.g., at the end of the hand, you will frequently find yourself in an “is he bluffing or not?” (or “should I bluff or not?”) situation.  You can work out the game-theoretically optimal calling (or bluffing) rate and then roll a die in your head.  But really, what are the chances that your opponent is bluffing exactly the correct percentage of the time?  To maximize your expected value, you gauge your opponent’s chances of bluffing, and if you have the correct pot odds, you call or fold (or raise) as appropriate.

So why would you ever play the game-theoretical strategy, rather than just making your best guess about what your opponent is doing and responding to that?  There are a couple of answers to this. First, in a repeating game, there can be strategic advantages to having your opponent know (or at least believe) that you are playing such a strategy.  But the slightly trickier—and for most people, more important—answer is that your estimation might be wrong: playing the “unexploitable” strategy is a defensive maneuver that ensures your opponent isn’t outsmarting you.

The key is that playing any “exploiting” strategy opens you up to be exploited yourself.  Think again of Rock-Paper-Scissors:  If you’re pretty sure your opponent is playing “rock” too often, you can try to exploit them by playing “paper” instead of randomizing—but this opens you up for the deadly “scissors” counterattack.  And if your opponent is a step ahead of you (or a level above you), he may have anticipated (or even set up) your new strategy, and has already prepared to take advantage.

Though it may be a bit of an oversimplification, I think a good meta-strategy for this kind of situation—where you have an equilibrium or “unexploitable” strategy available, but are tempted to play an exploiting but vulnerable strategy instead—is to step back and ask yourself the following question:  For this particular spot, if you get into a leveling contest with your opponent, who is more likely to win? If you believe you are, then, by all means, exploit away.  But if you’re unsure about his approach, and there’s a decent chance he may anticipate yours—that is, if he’s more likely to be inside your head than you are to be inside his—your best choice may be to avoid the leveling game altogether.  There’s no shame in falling back on the “unexploitable” solution, confident that he can’t possibly gain an advantage on you.

Back in Smackdown-land: Given the consensus view of the series, again, the equilibrium strategy would have given Ilardi about a 77% chance of winning.  And he could have announced this strategy to the world—it wouldn’t matter, as there’s nothing I could have done about it.  As noted above, when the actual picks came out, his new probability (63%) was significantly lower.  Of course, we shouldn’t read too much into this: it’s only a single result, and doesn’t prove that either one of us had an advantage.  On the other hand, I did make that pick in part because I felt that Ilardi was unlikely to “outlevel” me.  To be clear, this was not based on any specific assessment about Ilardi personally, but based my general beliefs about people’s tendencies in that kind of situation.

Was I right? The outcome and reasoning given in the final “picking game” has given me no reason to believe otherwise, though I think that the reciprocal lack of information this time around was a major part of that advantage.  If Ilardi and I find ourselves in a similar spot in the future (perhaps in next year’s Smackdown), I’d guess the considerations on both sides would be quite different.

Quick Take: Why Winning the NBA Draft Lottery Matters

Andres Alvarez (@NerdNumbers) tweeted the other day: “Opinion question. Does getting the #1 Pick in the Draft Lottery really up your odds at a title?”  To which I responded, “Yes, and it’s not close.”

If you’ve read my “How to Win a Championship in Any Sport,” you can probably guess why I would say that.  The reasoning is pretty simple:

  1. In any salary-capped sport, the key to building a championship contender is to maximize surplus value by underpaying your team as much as possible.
  2. The NBA is dominated by a handful of super-star players who get paid the same amount as regular-star players.
  3. Thus, the easiest way to get massive surplus value in the NBA is to get one or more of those players on your team, by any means necessary.
  4. Not only is the draft a great place to find potentially great players, but because of the ridiculously low rookie pay scale, your benefit to finding one is even greater.
  5. Superstars don’t grown on trees, and drafting #1 ensures you will get the player that you believe is most likely to become one.

I could leave it at that, as it’s almost necessarily true that drafting #1 will improve your chances.  But I suppose what people really want to know is how much does it “up your odds”?  To answer that, we also need to look at the empirical question of how valuable the “most likely to be a superstar” actually is.

Yes, #1 picks often bust out.  Yes, many great players are found in the other 59+ picks.  But it utterly confounds me why so many people seem to think that proving variance in outcomes means we shouldn’t pay attention to distribution of outcomes. [Side-note: It also bugs me that people think that because teams “get it wrong” so often, it must mean that NBA front offices are terrible at evaluating talent. This is logically false: maybe basketball talent is just extremely hard to evaluate!  If so, an incredible scouting department might be one that estimates an individual player’s value with slightly smaller error margins than everyone else—just as a roulette player who could guess the next number just 5% of the time could easily get rich. But I digress.]

So, on average, how much better are #1 draft picks than other high draft picks?  Let’s take a look at some data going back to 1969:

image

Ok, so #1 picks are, on average, a lot better than #2 picks, and it flattens out a bit from there.  For these purposes, I don’t think it’s necessary, but you can mess around with all the advanced stats and you’ll find pretty much the same thing (see, e.g., this old Arturo post). [Also, I won’t get into it here, but the flattening is important in its own right, as it tends to imply a non-linear talent distribution, which is consistent with my hypothesis that, unlike many other sports, basketball is dominated by extreme forces rather than small accumulated edges.]

So, a few extra points (or WPA’s, or WoW’s, or whatevers) here or there, what about championships?  And, specifically, what about championships a player wins for his drafting team?

image

Actually, this even surprised me: Knowing that Michael Jordan won 6 championships for his drafting team, I thought for sure the spike on pick 3 would be an issue.  But it turns out that the top picks still come out easily on top (and, again, the distribution among the rest is comparatively flat).  Also, it may not be obvious from that graph, but a higher proportion of their championships have gone to the teams that draft them as well.  So to recap (and add a little):

image

The bottom line is, at least over the last 40ish years, having the #1 pick in the draft was worth approximately four times as many championships as having a 2 through 8.  I would say that qualifies as “upping your odds.”

Stat Geek Smackdown Round 3: Scenarios

Update (5/22/11): Here’s an updated version of the same graphic (slightly reorganized), reflecting the latest:

image


As most of you know, I’m competing in ESPN’s Stat Geek Smackdown 2011. I lucked into the lead coming out of the first round, but have since dropped into a tie for 2nd.

Oklahoma City choking in the 2nd half of game six against Memphis cost me dearly: had they held on to their 10 point halftime lead to win that game, I would have remained outright leader heading into these last three series. But by losing that one and winning the next, the Thunder have put me in a tough spot: With Ilardi and I both having the Heat in 6, this round doesn’t give me a lot of opportunities to catch up. At this point, the lead—no matter how small—will be huge advantage heading into the Finals, and four of us are technically within striking distance:
Round 3 Scenarios

Stahlhut and Berri have put themselves in decent spots by being the only panelists currently in contention to choose OKC and Chicago, respectively. To regain a share of the lead, I need Dallas to win in 6 and not{Chicago win in 7}. But Dallas came through for me by winning in 6 in round one, so here’s hoping it happens again.

The Case for Dennis Rodman, Part 4/4(b): The Finale (Or, “Rodman v. Jordan 2”)

[ADDED: Unsurpisingly, this post has been getting a lot of traffic, which I assume includes a number of new readers who are unfamiliar with my “Case For Dennis Rodman.” So, for the uninitiated, I’d like to (at least temporarily) repeat a few of my late-comer intro points from Part 4(a): “The main things you need to know about this series are that it’s 1) extremely long (sprawling over 13 sections in 4 parts), 2) ridiculously (almost comically) detailed, and 3) only partly about Dennis Rodman.  There is a lot going on, so to help new and old readers alike, I have a newly-updated “Rodman Series Guide,” which includes a broken down list of articles, a sampling of some of the most important graphs and visuals, and a giant table summarizing the entire series by post, including the main points on both sides of the analysis.”]

So it comes down to this: With Rodman securely in the Hall of Fame, and his positive impact conclusively demonstrated by the most skeptical standards of proof I can muster, what more is there to say? Repeatedly, my research on Rodman has led to unexpectedly extreme discoveries: Rodman was not just a great rebounder, but the greatest of all time—bar none. And despite playing mostly for championship contenders, his differential impact on winning was still the greatest measured of any player with data even remotely as reliable as his. The least generous interpretation of the evidence still places Rodman’s value well within the realm of the league’s elite, and in Part 4(a) I explored some compelling reasons why the more generous interpretation may be the most plausible.

Yet even that more generous position has its limitations. Though the pool of players I compared with Rodman was broadly representative of the NBA talent pool on the whole, it lacked a few of the all-time greats—in particular, the consensus greatest: Michael Jordan. Due to that conspicuous absence, as well as to the considerable uncertainty of a process that is better suited to proving broad value than providing precise individual ratings, I have repeatedly reminded my readers that, even though Rodman kept topping these lists and metrics, I did NOT mean to suggest that Rodman was actually greater than the greatest of them all. In this final post of this series, I will consider the opposite position: that there is a plausible argument (with evidence to back it up) that Rodman’s astounding win differentials—even taken completely at face value—may still understate his true value by a potentially game-changing margin.

A Dialogue:

First off, this argument was supposed to be an afterthought. Just a week ago—when I thought I could have it out the next morning—it was a few paragraphs of amusing speculation. But, as often seems to be the case with Dennis Rodman-related research, my digging uncovered a bit more than I expected.

The main idea has its roots in a conversation I had (over bruschetta) with a friend last summer. This friend is not a huge sports fan, nor even a huge stats geek, but he has an extremely sharp analytical mind, and loves, loves to tear apart arguments—and I mean that literally: He has a Ph.D. in Rhetoric. In law school, he was the guy who annoyed everyone by challenging almost everything the profs ever said—and though I wouldn’t say he was usually right, I would say he was usually onto something.

That night, I was explaining my then-brand new “Case for Dennis Rodman” project, which he was naturally delighted to dissect and criticize. After painstakingly laying out most of The Case—of course having to defend and explain many propositions that I had been taking for granted and needing to come up with new examples and explanations on the fly, just to avoid sounding like an idiot (seriously, talking to this guy can be intense)—I decided to try out this rhetorical flourish that made a lot of sense to me intuitively, but which had never really worked for anyone previously:

“Let me put it this way: Rodman was by far the best third-best player in NBA History.”

As I explained, “third best” in this case is sort of a term of art, not referring to quality, but to a player’s role on his team. I.e., not the player a team is built around (1st best), or even the supporting player in a “dynamic duo” (like HOF 2nd-besters Scotty Pippen or John Stockton), but the guy who does the dirty work, who mostly gets mentioned in contexts like, “Oh yeah, who else was on that [championship] team? Oh that’s right, Dennis Rodman”).

“Ah, so how valuable is the best third-best player?”

At the time, I hadn’t completely worked out all of the win percentage differentials and other fancy stats that I would later on, but I had done enough to have a decent sense of it:

“Well, it’s tough to say when it’s hard to even define ‘third-best’ player, but [blah blah, ramble ramble, inarticulate nonsense] I guess I’d say he easily had 1st-best player value, which [blah blah, something about diminishing returns, blah blah] . . . which makes him the best 3rd-best player by a wide margin”.

“How wide?”

“Well, it’s not like he’s as valuable as Michael Jordan, but he’s the best 3rd-best player by a wider margin than Jordan was the best 1st-best player.”

“So you’re saying he was better than Michael Jordan.”

“No, I’m not saying that. Michael Jordan was clearly better.”

“OK, take a team with Michael Jordan and Dennis Rodman on it. Which would hurt them more, replacing Michael Jordan with the next-best primary scoring option in NBA history, or replacing Rodman with the next-best defender/rebounder in NBA history?”

“I’m not sure, but probably Rodman.”

“So you’re saying a team should dump Michael Jordan before it should dump Dennis Rodman?”

“Well, I don’t know for sure, I’m not sure exactly how valuable other defender-rebounders are, but regardless, it would be weird to base the whole argument on who happens to be the 2nd-best player. I mean, what if there were two Michael Jordan’s, would that make him the least valuable starter on an All-Time team?”

“Well OK, how common are primary scoring options that are in Jordan’s league value-wise?”

“There are none, I’m pretty sure he has the most value.”

“BALLPARK.”

“I dunno, there are probably between 0 and 2 in the league at any given time.”

“And how common are defender/rebounder/dirty workers that are in Rodman’s league value-wise?”

“There are none.”

“BALLPARK.”

“There are none. Ballpark.”

“So, basically, if a team had Michael Jordan and Dennis Rodman on it, and they could replace either with some random player ‘in the ballpark’ of the next-best player for their role, they should dump Jordan before they dump Rodman?”

“Maybe. Um. Yeah, probably.”

“And I assume that this holds for anyone other than Jordan?”

“I guess.”

“So say you’re head-to-head with me and we’re drafting NBA All-Time teams, you win the toss, you have first pick, who do you take?”

“I don’t know, good question.”

“No, it’s an easy question. The answer is: YOU TAKE RODMAN. You just said so.”

“Wait, I didn’t say that.”

“O.K., fine, I get the first pick. I’ll take Rodman. . . Because YOU JUST TOLD ME TO.”

“I don’t know, I’d have to think about it. It’s possible.”

Up to this point, I confess, I’ve had to reconstruct the conversation to some extent, but these last two lines are about as close to verbatim as my memory ever gets:

“So there you go, Dennis Rodman is the single most valuable player in NBA History. There’s your argument.”

“Dude, I’m not going to make that argument. I’d be crucified. Maybe, like, in the last post. When anyone still reading has already made up their mind about me.”

And that’s it. Simple enough, at first, but I’ve thought about this question a lot between last summer and last night, and it still confounds me: Could being the best “3rd-best” player in NBA history actually make Rodman the best player in NBA history? For starters, what does “3rd-best” even mean? The argument is a semantic nightmare in its own right, and an even worse nightmare to formalize well enough to investigate. So before going there, let’s take a step back:

The Case Against Dennis Rodman:

At the time of that conversation, I hadn’t yet done my league-wide study of differential statistics, so I didn’t know that Rodman would end up having the highest I could find. In fact, I pretty much assumed (as common sense would dictate) that most star-caliber #1 players with a sufficient sample size would rank higher: after all, they have a greater number of responsibilities, they handle the ball more often, and should thus have many more opportunities for their reciprocal advantage over other players to accumulate. Similarly, if a featured player can’t play—potentially the centerpiece of his team, with an entire offense designed around him and a roster built to supplement him—you would think it would leave a gaping hole (at least in the short-run) that would be reflected heavily in his differentials. Thus, I assumed that Rodman probably wouldn’t even “stat out” as the best Power Forward in the field, making this argument even harder to sell. But as the results revealed, it turns out feature players are replaceable after all, and Rodman does just fine on his own. However, there are a couple of caveats to this outcome:

First, without much larger sample sizes, I wouldn’t say that game-by-game win differentials are precise enough to settle disputes between players of similar value. For example, the standard deviation for Rodman’s 22% adjusted win differential is still 5% (putting him less than a full standard deviation above some of the competition). This is fine for concluding that he was extremely valuable, but it certainly isn’t extreme enough to outright prove the seemingly farfetched proposition that he was actually the most valuable player overall. The more unlikely you believe that proposition to be, the less you should find this evidence compelling—this is a completely rational application of Bayes’ Theorem—and I’m sure most of you, ex ante, find the proposition very very unlikely. Thus, to make any kind of argument for Rodman’s superiority that anyone but the biggest Rodman devotees would find compelling, we clearly need more than win differentials.

Second, it really is a shame that a number of the very best players didn’t qualify for the study—particularly the ultimate Big Three: Michael Jordan, Magic Johnson, and Larry Bird (who, in maybe my favorite stat ever, never had a losing month in his entire career). As these three are generally considered to be in a league of their own, I got the idea: if we treated them as one player, would their combined sample be big enough to make an adequate comparison? Well, I had to make a slight exception to my standard filters to allow Magic Johnson’s 1987 season into the mix, but here are the results:

image

Adjusted Win percentage differential is Rodman’s most dominant value stat, and here, finally, Herr Bjordson edges him. Plus this may not fully represent these players’ true strength: the two qualifying Jordan seasons are from his abrupt return in 1994 and his first year with the Wizards in 2001, and both of Bird’s qualifying seasons are from the last two of his career, when his play may have been hampered by a chronic back injury. Of course, just about any more-conventional player valuation system would rank these players above (or way above) Rodman, and even my own proprietary direct “all-in-one” metric puts these three in their own tier with a reasonable amount of daylight between them and the next pack (which includes Rodman) below. So despite having a stronger starting position in this race than I would have originally imagined, I think it’s fair to say that Rodman is still starting with a considerable disadvantage.

Trade-offs and Invisible Value:

So let’s assume that at least a few players offer more direct value than Dennis Rodman. But building a Champion involves more than putting together a bunch of valuable players: to maximize your chances of success, you must efficiently allocate a variety of scare resources, to obtain as much realized value as possible, through a massively complicated set of internal and external constraints.

For example, league rules may affect how much money you can spend and how many players you can carry on your roster. Game rules dictate that you only have so many players on the floor at any given time, and thus only have so many minutes to distribute. Strategic realities require that certain roles and responsibilities be filled: normally, this means you must have a balance of talented players who play different positions—but more broadly, if you hope to be successful, your team must have the ability to score, to defend, to rebound, to run set plays, to make smart tactical maneuvers, and to do whatever else that goes into winning. All of these little things that your team has to do can also be thought of as a limited resource: in the course of a game, you have a certain number of things to be done, such as taking shots, going after loose balls, setting up a screens, contesting rebounds, etc. Maybe there are 500 of these things, maybe 1000, who knows, but there are only so many to go around—and just as with any other scarce resource, the better teams will be the ones that squeeze the most value out of each opportunity.

Obviously, some players are better at some things than others, and may contribute more in some areas than others—but there will always be trade-offs. No matter how good you are, you will always occupy a slot on the roster and a spot on the floor, every shot you take or every rebound you get means that someone else can’t take that shot or get that rebound, and every dollar your team spends on you is a dollar they can’t spend on someone else. Thus, there are two sides to a player’s contribution: how much surplus value he provides, and how much of his team’s scarce resources he consumes.

The key is this: While most of the direct value a player provides is observable, either directly (through box scores, efficiency ratings, etc.) or indirectly (Adjusted +/-, Win Differentials), many of his costs are concealed.

Visible v. Invisible Effects

Two players may provide seemingly identical value, but at different costs. In very limited contexts this can be extremely clear: thought it took a while to catch on, by now all basketball analysts realize that scoring 25 points per game on 20 shots is better than scoring 30 points a game on 40 shots. But in broader contexts, it can be much trickier. For example, with a large enough sample size, Win Differentials should catch almost anything: everything good that a player does will increase his team’s chances of winning when he’s on the floor, and everything bad that he does will decrease his team’s chances of losing when he’s not. Shooting efficiency, defense, average minutes played, psychological impact, hustle, toughness, intimidation—no matter how abstract the skill, it should still be reflected in the aggregate.

No matter how hard the particular skill (or weakness) is to identify or understand, if its consequences would eventually impact a player’s win differentials, (for these purposes) its effects are visible.

But there are other sources of value (or lack thereof) which won’t impact a player’s win differentials—these I will call “invisible.” Some are obvious, and some are more subtle:

Example 1: Money

“Return on Investment” is the prototypical example of invisible value, particularly in a salary-cap environment, where every dollar you spend on one player is a dollar you can’t spend on another. No matter how good a player is, if you give up more to get him than you get from him in return, your team suffers. Similarly, if you can sign a player for much less than he is worth, he may help your team more than other (or even better) players who would cost more money.

This value is generally “invisible” because the benefit that the player provides will only be realized when he plays, but the cost (in terms of limiting salary resources) will affect his team whether he is in the lineup or not. And Dennis Rodman was basically always underpaid (likely because the value of his unique skillset wasn’t fully appreciated at the time):

image

Note: For a fair comparison, this graph (and the similar one below) includes only the 8 qualifying Shaq seasons from before he began to decline.

Aside from the obvious, there are actually a couple of interesting things going on in this graph that I’ll return to later. But I don’t really consider this a primary candidate for the “invisible value” that Rodman would need to jump ahead of Jordan, primarily for two reasons:

First, return on investment isn’t quite as important in the NBA as it is in some other sports: For example, in the NFL, with 1) so many players on each team, 2) a relatively hard salary cap (when it’s in place, anyway), and 3) no maximum player salaries, ROI is perhaps the single most important consideration for the vast majority of personnel decisions.  For this reason, great NFL teams can be built on the backs of many underpaid good-but-not-great players (see my extended discussion of fiscal strategy in major sports here).

Second, as a subjective matter, when we judge a player’s quality, we don’t typically consider factors that are external to their actual athletic attributes. For example, a great NFL quarterback could objectively hurt his team if he is paid too much, but we still consider him great. When we ask “who’s the best point guard in the NBA,” we don’t say, “IDK, how much more does Chris Paul get paid than Jason Kidd?” Note this is basically a social preference: It’s conceivable that in some economically-obsessed culture, this sort of thing really would be the primary metric for player evaluation. But personally, and for the purposes of my argument, I prefer our more traditional values on this one.

Example 2: Position

In the “perfect timing” department, a commenter “Siddy Hall” recently raised a hypothetical very similar to my friend’s:

You get 8 people in a room, all posing as GM’s. We’re allowed to select 5 players each from the entire history of the NBA. Then we’ll have a tournament. At PF, I would grab Rodman. And I’m confident that I’d win because he’s on my team. He’d dominate the glass and harass and shutdown a superstar. I think he’s the finest PF to ever play the game.

Of course, you need to surround him with some scorers, but when is that ever a problem?

The commenter only explicitly goes so far as to say that Rodman would be the most valuable power forward. Yet he says he is “confident” that he would win, with the only caveat being that his team gets other scorers (which is a certainty). So, he thinks Rodman is the best PF by a wide enough margin that his team would be a favorite against the team that got Michael Jordan. Let me play the role of my friend above: whether he means to or not, he’s basically saying that Rodman is more valuable than Jordan.

In this example, “position” is the scarce resource. Just as a player can be valuable for the amount of money the team must spend on him, he can also be valuable for his position. But this value can be visible, invisible, or both.

This is probably easiest to illustrate in the NFL, where positions and responsibilities are extremely rigid. An example I used in response to the commenter is that an NFL kicker who could get you 2 extra wins per season could be incredibly valuable. These two extra wins obviously have visible value: By definition, this is a player for whom we would expect to observe a 2 game per season win differential. But there’s another, very important way in which this player’s value would be much greater. As I said in response to the commenter, a +2 kicker could even be more valuable than a +4 quarterback.

In order to play the 2 win kicker, the only cost is your kicker slot, which could probably only get you a fraction of a win even if you had one of the best in the league on your team (relevant background note: kickers normally don’t contribute much, particularly since bad kickers likely influence their teams to make better tactical decisions, and vice-versa). But to play a 4-win quarterback, the cost is your quarterback slot. While the average QB and the average kicker are both worth approximately 0 games, good quarterbacks are often worth much more, and good kickers are worth very little.

Put most simply, because there are no other +2 kickers, that kicker could get 2 wins for virtually ANY team. The +4 QB would only provide 2 wins for teams who would be unable to acquire a +2 quarterback by other means. Or you can think about it conversely: Team A signs the kicker, and Team B signs the QB. For the moment, Team B might appear better, but the most value they will ever be able to get out of their QB/Kicker tandem is +4 games plus epsilon. Team A, on the other hand, can get more value out of their QB/kicker combo than Team B simply by signing any QB worth +2 or greater, who are relatively common.

Why does this matter? Well, in professional sports, we care about one thing more than any other: championships. Teams that win championships do so by having the best roster with the most value. Players like our special kicker provide unique avenues to surplus value that even great other players can’t.

To generalize a bit, you could say that value vs. a replacement player is generally visible, as it will be represented in win differentials no matter who you play for. But a player’s value relative to the entire distribution of players at his position can lead to substantial invisible benefits, as it can substantially improve his team’s ability to build a championship contender.

Formalizing “I-Factor”

Unfortunately, in basketball, such distinctions are much more nebulous. Sure, there are “positions,” but the spot where you line up on the floor is very different from the role you play. E.g., your primary scoring responsibilities can come from any position. And even then “roles” are dynamic and loosely defined (if at all)—some roles that are crucial to certain teams don’t even exist on others. Plus, teams win in different ways: you can do it by having 5 options on offense with 5 guys that can do everything (OK, this doesn’t happen very often, but the Pistons did it in 03-04), or you can be highly specialized and try to exploit the comparative advantages between your players (this seems to be the more popular model of late).

Rodman was a specialist. He played on teams that, for the most part, didn’t ask him to do more than what he was best at—and that probably helped him fully leverage his talents. But the truly amazing part is how much of a consistent impact he could have, on such a variety of different teams, and with seemingly so few responsibilities.

So let’s posit a particular type of invisible value and call it “I-Factor,” with the following elements:

  1. It improves your team’s chances of building a championship contender.
  2. It wouldn’t be reflected in your game-to-game win differential.
  3. It stems from some athletic or competitive skill or attribute.

In the dialogue above, I suggested that Rodman had an inordinate positive impact for a “3rd-best” player, and my friend suggested (insisted really) that this alone should vault him above great but more ordinary “1st-best” players, even if they had significantly more observable impact. Putting these two statements together, we have an examinable hypothesis: That Dennis Rodman’s value relative to his role constituted a very large “I-Factor.”

Evaluating the Hypothesis:

Because the value we’re looking for is (by definition) invisible, its existence is ridiculously hard—if not impossible—to prove empirically (which is why this argument is the dessert instead of the main course of this series).

However, there could be certain signs and indicators we can look for that would make the proposition more likely: specifically, things that would seem unusual or unlikely if the hypothesis were false, but which could be explainable either as causes or effects of the hypothesis being true.

Since the hypothesis posits both an effect (very large I-Factor), and a cause (unusually high value for his role), we should primarily be on the lookout for two things: 1) any interesting or unusual patterns that could be explainable as a consequence of Rodman having a large I-Factor, and 2) any interesting or unusual anomalies that could help indicate that Rodman had an excessive amount of value for his role.

Evidence of Effect:

To lighten the mood a bit, let’s start this section off with a riddle:

Q. What do you get for the team that has everything?

A. Dennis Rodman.

Our hypothetical Rodman I-Factor is much like that of our hypothetical super-kicker in the NFL example above. The reason that kicker was even more valuable than the 2 wins per season he could get you is that he could get those 2 wins for anyone. Normally, if you have a bunch of good players and you add more good players, the whole is less than the sum of its parts. In the sports analytics community, this is generally referred to as “diminishing returns.” An extremely simple example goes like this: Having a great quarterback on your team is great. Having a second great quarterback is maybe mildly convenient. Having a third great quarterback is a complete waste of space. But if you’re the only kicker in the league who is worth anywhere near 2 wins, your returns will basically never be diminished. In basketball, roles and responsibilities aren’t nearly as wed to positions as they are in football, but the principle is the same. There is only one ball, and there are only so many responsibilities: If the source of one player’s value overlaps the source of another’s, they will both have less impact. Thus, if Rodman’s hypothetical I-Factor were real, one thing we might expect to find is a similar lack of diminishing returns—in other words, an unusual degree of consistency.

And indeed, Rodman’s impact was remarkably consistent. His adjusted win differential held at between 17% and 23% for 4 different teams, all of whom were championship contenders to one extent or another. Obviously the Bulls and Pistons each won multiple championships. The two years that Rodman spent with the pre-Tim-Duncan-era Spurs, they won 55 and 62 games respectively (the latter led the league that season, though the Spurs were eliminated by eventual-champion Houston in the Western Conference Finals). In 1999, Rodman spent roughly half of the strike-shortened season on the Lakers; in that time the Lakers went 17-6, matching San Antonio’s league-leading winning percentage. But, in a move that was somewhat controversial with the Lakers players at the time, Rodman was released before the playoffs began, and the Lakers fell in the 2nd round—to the eventual-champion Spurs.

But consistency should only be evidence of invisible value if it is unusual—that is, if it exists where we wouldn’t expect it to. So let’s look at Rodman’s consistency from a couple of different angles:

Angle 1: Money (again)

The following graph is similar to my ROI graph above, except instead of mapping the player’s salary to his win differential, I’m mapping the rest of the team’s salary to his win differential:

image_thumb21

Note: Though obviously it’s only one data point and doesn’t mean anything, I find it amusing that the one time Shaq played for a team that had a full salary-cap’s worth of players without him, his win differential dropped to the floor.

So, basically, whether Rodman’s teams were broke or flush, his impact remained fairly constant. This is consistent with unusually low diminishing returns.

Angle 2: Position (again)

A potential objection I’ve actually heard a couple of times is that perhaps Rodman was able to have the impact he did because the circumstances he played in were particularly well-suited to never duplicating his skill-set: E.g., both Detroit and Chicago lacked dominant big men. Indeed, it’s plausible that part of his value came from providing the defense/rebounding of a dominant center, maximally leveraging his skill-set, and freeing up his teams to go with smaller, more versatile, and more offense-minded players at other positions (which could help explain why he had a greater impact on offensive efficiency than on defensive efficiency). However, all of this value would be visible. Moreover, the assumption that Rodman only played in these situations is false. Not only did Rodman play on very different teams with very different playing styles, he actually played on teams with every possible combination of featured players (or “1st and 2nd-best” players, if you prefer):

Rodman Teams

As we saw above, Rodman’s impact on all 4 teams was roughly the same. This too is consistent with an unusual lack of diminishing returns.

Evidence of Cause:

As I’ve said earlier, “role” can be very hard to define in the NBA relative to other sports. But to find meaningful evidence that Rodman provided an inordinate amount of value for his role, we don’t necessarily need to solve this intractable problem: we can instead look for “partial” or “imperfect” proxies. If some plausibly related proxy were to provide an unusual enough result, its actual relationship to the posited scenario could be self-reinforced—that is, the most likely explanation for the extremely unlikely result could be that it IS related to our hypothesis AND that our hypothesis is true.

So one scarce resource that is plausibly related to role is “usage.” Usage Rate is the percentage of team possessions that a player “uses” by taking a shot or committing a turnover. Shooters obviously have higher usage rates than defender/rebounders, and usage generally has little correlation with impact. But let’s take a look at a scatter-plot of qualifying players from my initial differential study (limited to just those who have positive raw win differentials):

image_thumb17

The red dot is obviously Dennis Rodman. Bonus points to anyone who said “Holy Crap” in their heads when they saw this graph: Rodman has both the highest win differential and the lowest Usage Rate, once again taking up residence in Outlier Land.

Let’s look at it another way: Treating possessions as the scarce resource, we might be interested in how much win differential we get for every possession that a player uses:
image_thumb19

Let me say this in case any of you forgot to think it this time:

“Holy Crap!”

Yes, the red dot is Dennis Rodman. Oh, if you didn’t see it, don’t follow the blue line, it won’t help.

This chart isn’t doctored, manipulated, or tailored in any way to produce that result, and it includes all qualifying players with positive win differentials. If you’re interested, the Standard Deviation on the non-Rodman players in the pool is .19. Yes, that’s right, Dennis Rodman is nearly 4.5 standard deviations above the NEXT HIGHEST player. Hopefully, you see the picture of what could be going on here emerging:  If value per possession is any kind of proxy (even an imperfect one) for value relative to role, it goes a long way toward explaining how Rodman was able to have such incredible impacts on so many teams with so many different characteristics.

The irony here is that the very aspect of Rodman’s game that frequently causes people to discount his value (“oh, he only does one thing”) may be exactly the quality that makes him a strong contender for first pick on the all-time NBA playground.

Conclusions:

Though the evidence is entirely circumstantial, I find the hypothesis very plausible, which in itself should be shocking. While I may not be ready to conclude that, yes, in fact, Rodman would actually be a more valuable asset to a potential championship contender than Michael freaking Jordan, I don’t think the opposite view is any stronger: That is, when you call that position crazy, conjectural, speculative, or naïve—as some of you inevitably will—I am fairly confident that, in light of the evidence, the default position is really no less so.

In fact, even if this hypothesis isn’t exactly true, I don’t think the next-most-likely explanation is that it’s completely false, and these outlandish outcomes were just some freakishly bizarre coincidence—it would be more likely that there is some alternate explanation that may be even more meaningful. Indeed, on some level, some of the freakish statistical results associated with Rodman are so extreme that it actually makes me doubt that the best explanation could actually stem from his athletic abilities. That is, he’s just a guy, how could he be so unusually good in such an unusual way? Maybe it actually IS more likely that the groupthink mentality of NBA coaches and execs accidentally DID leave a giant exploitable loophole in conventional NBA strategy; a loophole that Rodman fortuitously stumbled upon by having such a strong aversion to doing any of the things that he wasn’t the best at. If that is the case, however, the implications of this series could be even more severe than I intended.


Series Afterword:

Despite having spent time in law school, I’m not a lawyer. Indeed, one of the reasons I chose not to be one is because I get icky at the thought of picking sides first, and building arguments later.

In this case, I had strong intuitions about Rodman based on a variety of beliefs I had been developing about basketball value, combined with a number of seemingly-related statistical anomalies in Rodman’s record. Though I am naturally happy that my research has backed up those intuitions—even beyond my wildest expectations—I felt prepared for it to go the other way. But, of course, no matter how hard we try, we are all susceptible to bias.

Moreover, inevitably, certain non-material choices (style, structure, editorial, etc.) have to be made which emphasize the side of the argument that you are trying to defend. This too makes me slightly queasy, though I recognize it as a necessary evil in the discipline of rhetoric. My point is this: though I am definitely presenting a “case,” and it often appears one-sided, I have tried to conduct my research as neutrally as possible. If there is any area where you think I’ve failed in this regard, please don’t hesitate to let me know. I am willing to correct myself, beef up my research, or present compelling opposing arguments alongside my own; and though I’ve published this series in blog form, I consider this Case to be an ongoing project.

If you have any other questions, suggestions, or concerns, please bring them up in the comments (preferably) or email me and I will do my best to address them.

Finally, I would like to thank Nate Meyvis, Leo Wolpert, Brandon Wall, James Stuart, Dana Powers, and Aaron Nathan for the invaluable help they provided me by analyzing, criticizing, and/or ridiculing my ideas throughout this process. I’d also like to thank Jeff Bennett for putting me on this path, Scott Carder for helping me stay sane, and of course my wife Emilia for her constant encouragement.

The Case for Dennis Rodman, Part 4/4(a): All-Hall?

First of all, congrats to Dennis for his well-deserved selection as a 2011 Hall of Fame inductee—of course, I take full credit.  But seriously, when the finalists were announced, I immediately suspected that he would make the cut, mostly for two reasons:

  1. Making the finalists this year after failing to make the semi-finalists last year made it more likely that last year’s snub really was more about eligibility concerns than general antipathy or lack of respect toward him as a player.
  2. The list of co-finalists was very favorable.  First, Reggie Miller not making the list was a boon, as he could have taken the “best player” spot, and Rodman would have lacked the goodwill to make it as one of the “overdue”—without Reggie, Rodman was clearly the most accomplished name in the field.  Second, Chris Mullen being available to take the “overdue” spot was the proverbial “spoonful of sugar” that allowed the bad medicine of Rodman’s selection go down.

Congrats also to Artis Gilmore and Arvydas Sabonis.  In my historical research, Gilmore’s name has repeatedly popped up as an excellent player, both by conventional measures (11-time All-Star, 1xABA Champion, 1xABA MVP, led league in FG% 7 times), and advanced statistical ones (NBA career leader in True Shooting %, ABA career leader in Win Shares and Win Shares/48, and a great all-around rebounder).  It was actually only a few months ago that I first discovered—to my shock—that he was NOT in the Hall [Note to self: cancel plans for “The Case for Artis Gilmore”].  Sabonis was an excellent international player with a 20+ year career that included leading the U.S.S.R. to an Olympic gold medal and winning 8 European POY awards.  I remember following him closely when he finally came to the NBA, and during his too-brief stint, he was one of the great per-minute contributors in the league (though obviously I’m not a fan of the stat, his PER over his first 5 season—which were from age 31-35—was 21.7, which would place him around 30th in NBA history).  Though his sample size was too small to qualify for my study, his adjusted win percentage differential over his NBA career was a very respectable 9.95%, despite only averaging 24 minutes per game.

I was hesitant to publish Part 4 of this series before knowing whether Rodman made the Hall or not, as obviously the results shape the appropriate scope for my final arguments. So by necessity, this section has changed dramatically from what I initially intended.  But I am glad I waited, as this gives me the opportunity to push the envelope of the analysis a little bit:  Rather than simply wrapping up the argument for Rodman’s Hall-of-Fame candidacy, I’m going to consider some more ambitious ideas.  Specifically, I will articulate two plausible arguments that Rodman may have been even more valuable than my analysis so far has suggested.  The first of these is below, and the second—which is the most ambitious, and possibly the most shocking—will be published Monday morning in the final post of this series.

Introduction

I am aware that I’ve picked up a few readers since joining “the world’s finest quantitative analysts of basketball” in ESPN’s TrueHoop Stat Geek Smackdown.  If you’re new, the main things you need to know about this series are that it’s 1) extremely long (sprawling over 13 sections in 4 parts, plus a Graph of the Day), 2) ridiculously (almost comically) detailed, and 3) only partly about Dennis Rodman.  It’s also a convenient vehicle for me to present some of my original research and criticism about basketball analysis.

Obviously, the series includes a lot of superficially complicated statistics, though if you’re willing to plow through it all, I try to highlight the upshots as much as possible.  But there is a lot going on, so to help new and old readers alike, I have a newly-updated “Rodman Series Guide,” which includes a broken down list of articles, a sampling of some of the most important graphs and visuals, and as of now, a giant new table summarizing the entire series by post, including the main points on both sides of the analysis.  It’s too long to embed here, but it looks kind of like this:

summary

As I’ve said repeatedly, this blog isn’t just called “Skeptical” Sports because the name was available: When it comes to sports analysis—from the mundane to the cutting edge—I’m a skeptic.  People make interesting observations, perform detailed research, and make largely compelling arguments—which is all valuable.  The problems begin when then they start believing too strongly in their results: they defend and “develop” their ideas and positions with an air of certainty far beyond what is objectively, empirically, or logically justified.

With that said, and being completely honest, I think The Case For Dennis Rodman is practically overkill.  As a skeptic, I try to keep my ideas in their proper context: There are plausible hypotheses, speculative ideas, interim explanations requiring additional investigation, claims supported by varying degrees of analytical research, propositions that have been confirmed by multiple independent approaches, and the things I believe so thoroughly that I’m willing to write 13-part series’ to prove them.  That Rodman was a great rebounder, that he was an extremely valuable player, even that he was easily Hall-of-Fame caliber—these propositions all fall into that latter category: they require a certain amount of thoughtful digging, but beyond that they practically prove themselves.

Yet, surely, there must be a whole realm of informed analysis to be done that is probative and compelling but which might fall short of the rigorous standards of “true knowledge.”  As a skeptic, there are very few things I would bet my life on, but as a gambler—even a skeptical one—there are a much greater number of things I would bet my money on.  So as my final act in this production, I’d like to present a couple of interesting arguments for Rodman’s greatness that are both a bit more extreme and a bit more speculative than those that have come before.  Fortunately, I don’t think it makes them any less important, or any less captivating:

Read the rest of this entry »

MIT Sloan Sports Analytics Conference, Day 1: Recap and Thoughts

This was my first time attending this conference, and Day 1 was an amazing experience.  At this point last year, I literally didn’t know that there was a term (“sports analytics”) for the stuff I liked to do in my spare time.  Now I learn that there is not only an entire industry built up around the practice, but a whole army of nerds in its society.  Naturally, I have tons of criticisms of various things that I saw and heard—that’s what I do—but I loved it, even the parts I hated.

Here are the panels and presentations that I attended, along with some of my thoughts:

Birth to Stardom: Developing the Modern Athlete in 10,000 Hours?

Featuring Malcolm Gladwell (Author of Outliers), Jeff Van Gundy (ESPN), and others I didn’t recognize.

In this talk, Gladwell rehashed his absurdly popular maxim about how it takes 10,000 hours to master anything, and then made a bunch of absurd claims about talent. (Players with talent are at a disadvantage!  Nobody wants to hire Supreme Court clerks!  Etc.) The most re-tweeted item to come out of Day 1 by far was his highly speculative assertion that “a lot of what we call talent is the desire to practice.”

While this makes for a great motivational poster, IMO his argument in this area is tautological at best, and highly deceptive at worst.  Some people have the gift of extreme talent, and some people have the gift of incredible work ethic. The streets of the earth are littered with the corpses of people who had one and not the other.  Unsurprisingly, the most successful people tend to have both.  To illustrate, here’s a random sample of 10,000 “people” with independent normally distributed work ethic and talent (each with a mean of 0, standard deviation of 1):

image

The blue dots (left axis) are simply Hard Work plotted against Talent.  The red dots (right axis) are Hard Work plotted against the sum of Hard Work and Talent—call it “total awesome factor” or “success” or whatever.  Now let’s try a little Bayes’ Theorem intuition check:  You randomly select a person and they have an awesome factor of +5.  What are the odds that they have a work ethic of better than 2 standard deviations above the mean?  High?  Does this prove that all of the successful people are just hard workers in disguise?

Hint: No.  And this illustration is conservative:  This sample is only 10,000 strong: increase to 10 billion, and the biggest outliers will be even more uniformly even harder workers (and they will all be extremely talented as well).  Moreover, this “model” for greatness is just a sum of the two variables, when in reality it is probably closer to a product, which would lead to even greater disparities.  E.g.: I imagine total greatness achieved might be something like great stuff produced per minute worked (a function of talent) times total minutes worked (a function of willpower, determination, fortitude, blah blah, etc).

The general problem with Gladwell I think is that his emphatic de-emphasis of talent (which has no evidence backing it up) cheapens his much stronger underlying observation that for any individual to fully maximize their potential takes the accumulation of a massive amount of hard work—and this is true for people regardless of what their full potential may be.  Of course, this could just be a shrewd marketing ploy on his part: you probably sell more books by selling the hope of greatness rather than the hope of being an upper-level mid-manager (especially since you don’t have to worry about that hope going unfulfilled for at least 10 years).

Read the rest of this entry »

The Case for Dennis Rodman, Part 3/4(d)—Endgame: Statistical Significance

The many histograms in sections (a)-(c) of Part 3 reflect fantastic p-values (probability that the outcome occurred by chance) for Dennis Rodman’s win percentage differentials relative to other players, but, technically, this doesn’t say anything about the p-values of each metric in itself.  What this means is, while we have confidently established that Rodman’s didn’t just get lucky in putting up better numbers than his peers, we haven’t yet established the extent to which his being one of the best players by this measure actually proves his value.  This is probably a minor distinction to all but my most nitpicky readers, but it is exactly one of those nagging “little insignificant details” that ends up being a key to the entire mystery.

The Technical Part (Feel Free to Skip)

The challenge here is this: My preferred method for rating the usefulness and reliability of various statistics is to see how accurate they are at predicting win differentials.  But, now, the statistic I would like to test actually is win differential.  The problem, of course, is that a player’s win differential is always going to be exactly identical to his win differential. If you’re familiar with the halting problem or Gödel’s incompleteness theorem, you probably know that this probably isn’t directly solvable: that is, I probably can’t design a metric for evaluating metrics that is capable of evaluating itself.

To work around this, our first step must be to independently assess the reliability of win predictions that are based on our inputs.  As in sections (b) and (c), we should be able to do this on a team-by-team basis and adapt the results for player-by-player use.  Specifically, what we need to know is the error distribution for the outcome-predicting equation—but this raises its own problems.

Normally, to get an error distribution of a predictive model, you just run the model a bunch of times and then measure the predicted results versus the actual results (calculating your average error, standard deviation, correlation, whatever).  But, because my regression was to individual games, the error distribution gets “black-boxed” into the single-game win probability.

[A brief tangent: “Black box” is a term I use to refer to situations where the variance of your input elements gets sucked into the win percentage of a single outcome.  E.g., in the NFL, when a coach must decide whether to punt or go for it on 4th down late in a game, his decision one way or the other may be described as “cautious” or “risky” or “gambling” or “conservative.”  But these descriptions are utterly vapid: with respect to winning, there is no such thing as a play that is more or less “risky” than any other—there are only plays that improve your chances of winning and plays that hurt them.  One play may seem like a bigger “gamble,” because there is a larger immediate disparity between its possible outcomes, but a 60% chance of winning is a 60% chance of winning.  Whether your chances comes from superficially “risky” plays or superficially “cautious” ones, outside the “black box” of the game, they are equally volatile.]

For our purposes, what this means is that we need to choose something else to predict: specifically, something that will have an accurate and measurable error distribution.  Thus, instead of using data from 81 games to predict the probability of winning one game, I decided to use data from 41 season-games to predict a team’s winning percentage in its other 41 games.

To do this, I split every team season since 1986 in half randomly, 10 times each, leading to a dataset of 6000ish randomly-generated half-season pairs.  I then ran a logistic regression from each half to the other, using team winning percentage and team margin of victory as the input variables and games won as the output variable.  I then measured the distribution of those outcomes, which gives us a baseline standard deviation for our predicted wins metric for a 41 game sample.

Next, as I discussed briefly in section (b), we can adapt the distribution to other sample sizes, so long as everything is distributed normally (which, at every point in the way so far, it has been).  This is a feature of the normal distribution: it is easy to predict the error distribution of larger and smaller datasets—your standard deviation will be directly proportional to the square-root of the ratio of the new sample size to the original sample size.

Since I measured the original standard deviations in games, I converted each player’s “Qualifying Minutes” into “Qualifying Games” by dividing by 36.  So the sample-size-adjusted standard deviation is calculated like this:

=[41GmStDev]*SQRT([PlQualGames]/41)

Since the metrics we’re testing are all in percentages, we then divide the new standard deviation by the size of the sample, like so:

=([41GmStDev]*SQRT([PlQualGames]/41))/[PlQualGames]

This gives us a standard deviation for actual vs. predicted winning percentages for any sample size.  Whew!

The Good, Better, and Best Part

The good news is: now that we can generate standard deviations for each player’s win differentials, this allows us to calculate p-values for each metric, which allows us to finally address the big questions head on: How likely is it that this player’s performance was due to chance?  Or, put another way: How much evidence is there that this player had a significant impact on winning?

The better news is: since our standard deviations are adjusted for sample size, we can greatly increase the size of the comparison pool, because players with smaller samples are “punished” accordingly.  Thus, I dropped the 3-season requirement and the total minutes requirement entirely.  The only remaining filters are that the player missed at least 15 games for each season in which a differential is computed, and that the player averaged at least 15 minutes per game played in those seasons.  The new dataset now includes 1539 players.

Normally I don’t weight individual qualifying seasons when computing career differentials for qualifying players, because the weights are an evidentiary matter rather than an impact matter: when it comes to estimating a player’s impact, conceptually I think a player’s effect on team performance should be averaged across circumstances equally.  But this comparison isn’t about whose stats indicate the most skill, but whose stats make for the best evidence of positive contribution.  Thus, I’ve weighted each season (by the smaller of games missed or played) before making the relevant calculations.

So without further ado, here are Dennis Rodman’s statistical significance scores for the 4 versions of Win % differential, as well as where he ranks against the other players in our comparison pool:

image_thumb7

Note: I’ve posted a complete table of z scores and p values for all 1539 players on the site.  Note also that due to the weighting, some of the individual differential stats will be slightly different from their previous values.

You should be careful to understand the difference between this table of p-values and ranks vs. similar ones from earlier sections.  In those tables, the p-value was determined by Rodman’s relative position in the pool, so the p-value and rank basically represented the same thing.  In this case, the p-value is based on the expected error in the results.  Specifically, they are the answer to the question “If Dennis Rodman actually had zero impact, how likely would it be for him to have posted these differentials over a sample of this size?”  The “rank” is then where his answer ranks among the answers to the same question for the other 1538 players.  Depending on your favorite flavor of win differential, Rodman ranks anywhere from 1st to 8th.  His average rank among those is 3.5, which is 2nd only to Shaquille O’Neal (whose differentials are smaller but whose sample is much larger).

Of course, my preference is for the combined/adjusted stat.  So here is my final histogram:

image5_thumb

Note: N=1539.

Now, to be completely clear, as I addressed in Part 3(a) and 2(b), so that I don’t get flamed (or stabbed, poisoned, shot, beaten, shot again, mutilated, drowned, and burned—metaphorically): Yes, actually I AM saying that, when it comes to empirical evidence based on win differentials, Rodman IS superior to Michael Jordan.  This doesn’t mean he was the better player: for that, we can speculate, watch the tape, or analyze other sources of statistical evidence all day long.  But for this source of information, in the final reckoning, win differentials provide more evidence of Dennis Rodman’s value than they do of Michael Jordan’s.

The best news is: That’s it.  This is game, set, and match.  If the 5 championships, the ridiculous rebounding stats, the deconstructed margin of victory, etc., aren’t enough to convince you, this should be:  Looking at Win% and MOV differentials over the past 25 years, when we examine which players have the strongest, most reliable evidence that they were substantial contributors to their teams’ ability to win more basketball games, Dennis Rodman is among the tiny handful of players at the very very top.

The Case for Dennis Rodman, Part 3/4(c)—Beyond Margin of Victory

In the conventional wisdom, winning is probably overrated.  The problem ultimately boils down to information quality: You only get one win or loss per game, so in the short-run, great teams, mediocre team, or teams that just get lucky can all achieve the same results.  Margin of victory, on the other hand, has a whole range of possible outcomes that, while imperfectly descriptive of the bottom line, correlate strongly with team strength.  You can think about it like sample size: a team’s margin of victory over a handful of games gives you a lot more data to work with than their won-loss record.  Thus, particularly when the number of games you draw your data from is small, MOV tends to be more probative.

Long ago, the analytic community recognized this fact, and has moved en masse to MOV (and its ilk) as the main element in their predictive statistics.  John Hollinger, for example, uses margin exclusively in his team power ratings—completely ignoring winning percentage—and these ratings are subsequently used for his playoff prediction odds, etc.  Note, Hollinger’s model has a lot of baffling components, like heavily weighting a team’s performance in their last 10 games (or later in their last 25% of games), when there is no statistical evidence that L10 is any more predictive than first 10 (or any other 10).  But this particular choice is of particular interest, especially as it is indicative of an almost uniform tendency among analysts to substitute MOV-style stats for winning percentage entirely.

This is both logically and empirically a mistake.  As your sample size grows, winning percentage becomes more and more valuable.  The reason for this is simple:  Winning percentage is perfectly accurate—that is, it perfectly reflects what it is that we want to know—but has extremely high variance, while MOV is an imperfect proxy, whose usefulness stems primarily from its much lower variance.  As sample sizes increase, the variance for MOV decreases towards 0 (which happens relatively quickly), but the gap between what it measures and what we want to know will persist in perpetuity.  Thus, after a certain point, the “error” in MOV remains effectively constant, while the “error” in winning percentage continuously decreases.  To get a simple intuitive sense of this, imagine the extremes:  after 5 games, clearly you will have more faith in a team that has won 2 but has a MOV of +10 over a team that has won 3 but has a MOV of +1.  But now imagine 1000 games with the same MOV’s and winning percentages: one team has won 400 and the other has won 600.  If you had to place money on one of the two teams to win their next game, you would be a fool to favor the first.  But beyond the intuitive point, this is essentially an empirical matter: with sufficient data, we should be able to establish the relative importance of each for any given sample-size.

So for this post, I’ve employed the same method that I used in section (b) to create our MOV-> Win% formula (logistic regression for all 55,000+ team games since 1986), except this time I included both Win % and MOV (over the team’s other 81 games) as the predictive variables.  Here, first, are the coefficients and corresponding p-values (probability that the variable is not significant):

image_thumb20

It is thus empirically incontrovertible that, even with an 81-game predictive sample, both MOV and Win% are statistically significant predictive factors.  Also, for those who don’t eat logistic regression outputs for breakfast, I should be perfectly clear what this means: It doesn’t just mean that both W% and MOV are good at predicting W%—this is trivially true—it means that, even when you have one, using the other as well will make your predictions substantially better.  To be specific, here is the formula that you would use to predict a team’s winning percentage based on these two variables:

\large{PredictedWin\% = \dfrac{1}{1+e^{-(1.43wp+.081mv-.721)}}}

Note: Again, e is euler’s number, or ~2.72.  wp is the variable for winning % over the other 81 games, and mv is the variable for Margin of Victory over the other 81 games.

And again, for your home-viewing enjoyment, here is the corresponding Excel formula:

=1/(1+EXP(-(1.43*[W%]+.081[MOV]-.721)))

Finally, in order to visualize the relative importance of each variable, we can look at their standardized coefficients (shown here with 95% confidence bars):

image12_thumb1

Note: Standardized coefficients, again, are basically a unit of measurement for comparing the importance of things that come in different shapes and sizes.

For an 81-game sample (which is about as large of a consistent sample as you can get in the NBA), Win% is about 60% as important as MOV when it comes to predicting outcomes.  At the risk of sounding redundant, I need to make this extremely clear again: this does NOT mean that Win% is 60% as good at predicting outcomes as margin of victory (actually, it’s more like 98% as good at that)—it means that, when making your ideal prediction, which incorporates both variables, Win % gets 60% as much weight as MOV (as an aside, I should also note that the importance of MOV drops virtually to zero when it comes to predicting playoff outcomes, largely—though not entirely—because of home court advantage).

This may not sound like much, but I think it’s a pretty significant result:  At the end of the day, this proves that there IS a skill to winning games independent of the rates at which you score and allow points.  This is a non-obvious outcome that is almost entirely dismissed by the analytical community.  If NBA games were a random walk based on possession-to-possession reciprocal advantages, this would not be the case at all.

Now, note that this is formally the same as the scenario discussed in section (b): We want to predict winning percentages, but using MOV alone leaves a certain amount of error.  What this regression proves is that this error can be reduced by incorporating win percentage into our predictions as well.  So consider this proof-positive that X-factors are predictively valuable.  Since the predictive power of Win% and MOV should be equivalent no matter their source, we can now use this regression to make more accurate predictions about each player’s true impact.

Adapting this equation for individual player use is simple enough, though slightly different from before:  Before entering the player’s Win% differential, we have to convert it into a raw win percentage, by adding .5.  So, for example, if a player’s W% differential were 21.6%, we would enter 71.6%.  Then, when a number comes out the other side, we can convert it back into a predicted differential by subtracting .5, etc.

Using this method, Rodman’s predicted win differential comes out to 14.8%.  Here is the new histogram:
image_thumb16

Note: N is still 470.

This histogram is also weighted by the sample size for each player (meaning that a player with 100 games worth of qualifying minutes counts as 100 identical examples in a much larger dataset, etc.).  I did this to get the most accurate distribution numbers to compute P values (which, in this case, work much like a percentile) for individual players.  Here is a summary of the major factors for Dennis Rodman:

image_thumb13

For comparison, I’ve also listed the percentage of eligible players that match the qualifying thresholds of my dataset (minus the games missed) who are in the Hall of Fame.  Specifically, that is, those players who retired in 2004 or earlier and who have at least 3 seasons since 1986 with at least 15 games played in which they averaged at least 15 minutes per game.  This gives us a list of 462 players, of which 23 are presently IN the Hall. The difference in average skill between that set of players and the differential set is minimal, and the reddish box on the histogram above surrounds the top 5% of predicted Win% differentials in our main data.

While we’re at it, let’s check in on the list of “select” players we first saw in section (a) and how they rank in this metric, as well as in some of the others I’ve discussed:

image_thumb27

For fun, I’ve put average rank and rank of ranks (for raw W% diff, adjusted W% diff, MOV-based regression, raw W%/MOV-based regression, raw X-Factor, adjusted X-Factor, and adjusted W%/MOV-based regression) on the far right.  I’ve also uploaded the complete win differential table for all 470 players to the site, including all of the actual values for these metrics and more.  No matter which flavor of metric you prefer (and I believe the highlighted one to be the best), Rodman is solidly in Hall of Fame territory.

Finally, I’m not saying that the Hall of Fame does or must pick players based on their ability to contribute to their team’s winning percentages.  But if they did, and if these numbers were accurate, Rodman would deserve a position with room to spare.  Thus, naturally, one burning question remains: how much can we trust these numbers (and Dennis Rodman’s in particular)?  This is what I will address in section (d) tomorrow.

The Case for Dennis Rodman, Part 3/4(b)—Rodman’s X-Factor

The sports analytical community has long used Margin of Victory or similar metrics as their core component for predicting future outcomes.  In situations with relatively small samples, it generally slightly outperforms win percentages, even when predicting win percentages.

There are several different methods for converting MOV into expected win-rates.  For this series, I took the 55,000+ regular-season team games played since 1986 and compared their outcomes to the team’s Margin of Victory over the other 81 games of the season.  I then ran this data through a logistic regression (a method for predicting things that come in percentages) with MOV as the predictor variable.  Here is the resulting formula:

\large{PredictedWin\% = \dfrac{1}{1+e^{-(.127mv-.004}}}

Note: e is euler’s number, or ~2.72.  mv is the variable for margin of victory.

This will return the probability between 0 and 1, corresponding to the odds of winning the predicted game.  If you want to try it out for yourself, the excel formula is:

1 / (1 + EXP(-(-0.0039+0.1272*[MOV])))

So, for example, if a team’s point differential (MOV) over 81 games is 3.78 points per game, their odds of winning their 82nd game would be 61.7%.

Of course, we can use this same formula to predict a player’s win% differential based on his MOV differential.  If, based on his MOV contribution alone, a player’s team would be expected to win 61.7% of the time, then his predicted win% differential is what his contribution would be above average, in this case 11.7% (this is one reason why, for comparison purposes, I prefer to use adjusted win differentials, as discussed in Part 3(a)).

As discussed in the part 2(b) of this series (“With or Without Worm”), Dennis Rodman’s MOV differential was 3.78 points, which was tops among players with at least a season’s worth of qualifying data, corresponding to the aforementioned win differential of 11.7%.  Yet this under-predicts his actual win percentage differential by 9.9%.  This could be the result of a miscalibrated prediction formula, but as you can see in the following histogram, the mean for win differential minus predicted win differential for our 470 qualifying player dataset is actually slightly below zero at –0.7%:

clip_image002

Rodman has the 2nd highest overall, which is even more crazy considering that he had one of the highest MOV’s (and the highest of anyone with anywhere close to his sample size) to begin with.  Note how much of an outlier he is in this scatterplot (red dot is Rodman):

clip_image003

I call this difference the “X-Factor.”  For my purposes, “X” stands for “unknown”:  That is, it is the amount of a player’s win differential that isn’t explained by the most common method for predicting win percentages.  For any particular player, it may represent an actual skill for winning above and beyond a player’s ability to contribute to his team’s margin of victory (in section (c), I will go about proving that such a skill exists), or it may simply be a result of normal variance.  But considering that Rodman’s sample size is significantly larger than the average in our dataset, the chances of it being “error” should be much smaller.  Consider the following:

clip_image004

Again, Rodman is a significant outlier:  no one with more than 2500 qualifying minutes breaks 7.5%.  Rodman’s combination of large sample with large Margin of Victory differential with large X-Factor is remarkable.  To visualize this, I’ve put together a 3-D scatter plot of all 3 variables:

clip_image005

It can be hard to see where a point stands in space in a 2-D image, but I’ve added a surface grid to try to help guide you: the red point on top of the red mountain is Dennis Rodman.

To get a useful measure of how extreme this is, we can approximate a sample-size adjustment by comparing the number of qualifying minutes for each player to the average for the dataset, and then adjusting the standard deviation for that player accordingly (proportional to the square root of the ratio, a method which I’ll discuss in more detail in section (d)).  After doing this, I can re-make the same histogram as above with the sample-adjusted numbers:clip_image006

No man is an island.  Except, apparently, for Dennis Rodman.  Note that he is about 4 standard deviations above the mean (and observe how the normal distribution line has actually blended with the axis below his data point).

Naturally, of course, this raises the question:

Where does Rodman’s X-Factor come from?

Strictly speaking, what I’m calling “X-Factor” is just the prediction error of this model with respect to players.  Some of that error is random and some of it is systematic.  In section (c), I will prove that it’s not entirely random, though where it comes from for any individual player, I can only speculate.

Margin of Victory treats all contributions to a game’s point spread equally, whether they came at the tail end of a blowout, or in the final seconds of squeaker.  One thing that could contribute to a high X-factor is “clutch”ness.  A “clutch” shooter (like a Robert Horry), for example, might be an average or even slightly below-average player for most of the time he is on the floor, but an extremely valuable one near the end of games that could go either way.  The net effect from the non-close games would be small for both metrics, but the effect of winning close games would be much higher on Win% than MOV.  Of course, “clutch”ness doesn’t have to be limited to shooters:  e.g., if one of a particular player’s skill advantages over the competition is that he makes better tactical decisions near the end of close games (like knowing when to intentionally foul, etc.), that would reflect much more strongly in his W% than in his MOV.

Also, a player who contributes significantly whenever they are on the floor but is frequently taken out of non-close games as a precaution again fatigue or injury may have a Win % that accurately reflects his impact, but a significantly understated MOV.  E.g., in the Boston Celtics “Big 3” championship season, Kevin Garnett was rested constantly—a fact that probably killed his chances of being that season’s MVP—yet the Celtics won by far the most games in the league.  In this case, the player is “clutch” just by virtue of being on the floor more in clutch spots.

The converse possibility also exists:  A player could be “reverse clutch,” meaning that he plays worse when the game is NOT on the line.  This would ultimately have the same statistical effect as if he played better in crunch time.  And indeed, based on completely non-rigorous and anecdotal speculation, I think this is a possible factor in Rodman’s case.  During his time in Chicago, I definitely recall him doing a number of silly things in the 4th quarter of blowout games (like launching up ridiculous 3-pointers) when it didn’t matter—and in a game of small margins, these things add up.

Finally, though it cuts a small amount against the absurdity of Rodman’s rebounding statistics, I would be derelict as an analyst not to mention the possibility that Rodman may have played sub-optimally in non-close games in order to pad his rebounding numbers.  The net effect, of course, would be that his rebounding statistics could be slightly overstated, while his value (which is already quite prodigious) could be substantially understated.  To be completely honest, with his rebounding percentages and his X-Factor both being such extreme outliers, I have to think that at least some relationship existing between the two is likely.

If you’re emotionally attached to the freak-alien-rebounder hypothesis, this might seem to be a bad result for you.  But if you’re interested in Rodman’s true value to the teams he played for, you should understand that, if this theory is accurate, it could put Rodman’s true impact on winning into the stratosphere.  That is, this possibility gives no fuel to Rodman’s potential critics: the worst cases on either side of the spectrum are that Rodman was the sickest rebounder with a great impact on his teams, or that he was a great rebounder with the sickest impact.

In the next section, I will be examining the relative reliability and importance of Margin of Victory vs. Win % generally, across the entire league.  In my “endgame” analysis, this is the balance of factors that I will use.  But the league patterns do not necessarily apply in all situations:  In some cases, a player’s X-factor may be all luck, in some cases it may be all skill, and in most it is probably a mixture of both.  So, for example, if my speculation about Rodman’s X-Factor were true, my final analysis of Rodman’s value could be greatly understated.

The Case for Dennis Rodman, Part 3/4(a)—Just Win, Baby (in Histograms)

First off, congratulations to Dennis for making the Hall of Fame finalist list for 2011. The circumstances seem favorable to his making it, and if I had to guess I’d say he probably will. While his under-appreciated status has been a useful vehicle for my analytical agenda, I certainly hope he will be voted in—though I might prefer it be with a copy of my series in the voters’ hands.

Second, I apologize for the delay in getting this section out. I’m reminded of the words of the always brilliant Detective Columbo:

I worry. I mean, little things bother me. I’m a worrier. I mean, little insignificant details – I lose my appetite. I can’t eat. My wife, she says to me, “You know, you can really be a pain.”

Of course, as Columbo understood, the “insignificant” details that nag at you are usually anything but. Since Part 3 of this series should be the last to include heavily-quantitative analysis—and because it is so important to understanding Rodman’s true value—I really tried to tie up all the loose ends (even those that might at first seem to be redundant or obvious).

As a result, what began as a simple observation grew into something painfully detailed and extremely long (even by my standards)—but well worth it. So, once again, I’ve decided to break it down into 4 sections—however, each of these will be relatively short, and I’ll be posting them back-to-back each morning from now through Saturday. Here is the Cliff’s Notes version:

  1. Rodman had an observably great impact on his teams’ winning percentages.
  2. This impact was much greater than his already great impact on Margin of Victory would have predicted.
  3. Contrary to certain wisdom in the analytical community, Margin of Victory and Win% are both valuable indicators predictively, and combining Rodman’s differentials in both put him deep in Hall of Fame territory.
  4. Rodman’s differentials are statistically significant at one of the highest levels in NBA history.

Now, on with the show:

Introduction

One of the most common doubts I hear about Dennis Rodman’s value stems from the belief that his personal successes—5 NBA championships, freakish rebounding statistics, etc.—were probably largely a result of his having played for superior teams. For example, his prodigious rebounding may have been something he was “allowed” to do because he played for good offensive teams and (as the argument goes) had few other offensive responsibilities.

In it’s weaker form, I think this argument is plausible but irrelevant: Perhaps Rodman would not have been able to put up the numbers that he did if he were “required” to do more on offense. But the implication that this diminishes his value is absurd—it would be like saying that Cy Young wasn’t a particularly valuable baseball player because he couldn’t have put up such a great ERA if he were “required” to hit every night.

The stronger form, however, suggests that Rodman’s anomalous rebounding statistics probably weren’t due to any particularly anomalous talent or contribution, but were merely (or at least mostly) a byproduct of his fortunate circumstances.

If this were true, however, one of the following things would necessarily have to follow:

  1. His rebounding must not have contributed much value to his teams, or
  2. The situations he played in must have been uniquely favorable to leveraging value from a designated rebounder, or
  3. The choice to use a designated rebounder on an offensively strong team must have been an extremely successful exploitative strategy.

The third, I technically cannot disprove: It is theoretically possible that Rodman’s refusal to take a lot of shots on offense unintentionally caused his teams to stumble upon an amazing exploitative strategy that no one had discovered before and that no-one has duplicated since (though, if that were the case, he still might deserve some credit for forcing their hands).

But 1 and 2 simply aren’t supported by the data: As I will show, Rodman had wildly positive impacts on 4 different teams that had little in common, except of course for being solid winners with Rodman in the lineup.

Rodman’s Win % Differential

As I’ve discussed previously, a player’s differential statistics are simply the difference in their team’s performance in the games they played versus the games they missed. One very important differential stat we might be interested in is winning percentage.
To look at Rodman’s numbers in this area, I used exactly the same process that I described in Part 2(b) to look at his other differentials. However, for comparison purposes, I’ve greatly expanded the pool of players by dropping the qualifying minutes requirement from 3000 to 1000. This grows the pool from 164 players to 470.

Why expand? Honestly, because Rodman’s extreme win % differential allows it. I think the more stringent filters produce a list that is more reliable from top to bottom—but in this case, I am mostly interested in (literally) the top. There are some players on the list with barely 1/3 of a season’s worth of qualifying playing time to back up their numbers—which should produce extreme volatility—yet still no one is able to overtake Rodman.

Here is Rodman’s raw win differential, along with those of a number of select players (including a few whose styles are often compared to Rodman’s, some Hall of Famers, some future first-ballot Hall of Fame selections, and Rodman’s 2011 Hall of Fame co-finalists Chris Mullin and Maurice Cheeks):

image

I will put up a table of the entire list of 470 players—including win differentials and a number of other metrics that I will discuss throughout the rest of Part 3—along with section (c) on Friday.
Amazingly, this number may not even reflect Rodman’s true impact, because he generally played for extremely good teams, where it is not only harder to contribute, but where a given impact will have less of an effect on win percentage (for example, if your team normally wins 90% of its games, it is clearly impossible to have a win% differential above 10%). To account for this, I’ve also created “adjusted” win% differentials, which attempt to normalize a player’s percentage increase/decrease to what it would be on a .500 team.

This adjustment is done somewhat crudely, by measuring how far the player gets you toward 100% (for positive impacts) or toward 0% (for negative). E.g., if someone plays for a team that normally wins 70%, and they win 85% with him in the lineup, that is 50% of the way to 100%. Thus, as 50% of the way from 50% to 100% is 75%, that player’s adjusted differential is 25% (as opposed to their raw value of 15%).
A few notes about this method: While I prefer the adjusted numbers for this situation, they have their drawbacks. They are most accurate when dealing with consistently good or bad teams, over multiple seasons, and with bigger sample sizes. They are less accurate with smaller sample sizes, in individual seasons, and with uncertain team quality. This is because regression to the mean can become an interfering factor. When looking at individual seasons in a void, it is relatively easy to account for both effects, which I do for my league-wide win differential analysis. But when aggregating independent seasons that have a common related element—such as the same team or player—you basically have to pick your poison (of course, there may be some way to deal with this issue that I just don’t know or haven’t thought of yet). I will tend to use the adjusted numbers for this analysis, but though they are slightly more favorable to Rodman, either metric leads to the same bottom line. In any case, the tables I will be posting include both metrics (as well as other options).

Dennis Rodman’s adjusted numbers boost his win differential to 21.6%, widening the margin between him and 2nd place. I know I will be flamed if I don’t add that (just as I noted in part 2(b)) I am not claiming that Rodman was actually the best player in the last 25 years. This is a volatile statistic, and Rodman merely happening to have the best win differential among the group of 470 qualifying players does not mean he was actually the best player overall, or even that he was the best player in the group. That said, we should not dismiss the extremeness of the result either:

image

I will be using a number of (eerily similar) histograms through the rest of Part 3 as well. If you’re not familiar, histograms are one of the simplest and most useful graphical representations of single-variable data (yet, inexplicably, they aren’t built into Excel): each bar represents the number of data points of the designated value. If the variable is continuous (as it is in this case), each bar is basically a “container” that tells you how many data points fit in between the left and right values of the bar (technically it tells you the “density” of points near the center of the container, but those are effectively the same in most circumstances). Their main purpose is to eyeball how the variable is distributed—in this case, as you can see it is distributed normally.

The red line is an overlay of the normal distribution of the sample, which has a mean of –0.5% and standard deviation of 6.3%. This puts Rodman just over 3.5 standard deviations above the mean, a value that should occur about once in every 4000 instances—and he does this based on a standard deviation that is derived from a pool that includes the statistics of many players that have as little as 1/4th as much relevant data as he has.

Moreover, as I will discuss in section (b) tomorrow, his win % differential is not only extreme relative to the rest of the NBA, it is even extreme relative to himself—and this has important implications in its own right.