Tiger Woods Needs to Need a Therapist (and Probably Does)

Tiger Woods is obviously having a terrible season.  His scoring average so far (71.66) is almost 2 strokes higher than his previous worst year (69.75 in 1997).  He has no wins, no top 3’s, and has only finished top 10 in 2 of 9 tournaments.  That 22%, if it holds up, would be the worst of his career by 20%.  For the first time basically ever, his eventually capturing the all-time major championships record is in doubt.  Of course, 9 tournaments is not a large sample, and this could just be a slump.  As I see it, there are basically 4 possibilities:

  1. Tiger is running very badly.
  2. Tiger is in serious decline.
  3. Tiger is declining somewhat and running somewhat badly.
  4. Tiger needs a shrink.

So the questions of the day are:  a) How likely are each of these possibilities? and b) What does each say about his chances of winning 19 majors?  For reasons I will explain, I believe 1 and 2 are very unlikely, and 3 is somewhat unlikely.  Which is fine, since Tiger should basically pray this is all in his head, because otherwise his chances of catching and passing Nicklaus are diminishing considerably.

I would normally be the first to promote a “bad variance” explanation of this kind of phenomena, but in this case: a) Tiger doesn’t really have slumps like this; and b) the timing is too much of a coincidence.  For some historical perspective, here’s a graph of Tiger’s overall winning %, top-10 finish %, and winning % in majors, by year:

tiger, phil and jack_3492_image001

For the record, his averages are 28.4%, 66.4% and 24.6%, respectively.  As should be obvious, not only is his 2010 historically awful, but there is nothing to suggest that he was in decline beforehand.  Despite having recently run slightly worse in majors than he did in the early 2000’s, his Win% and Top-10% trendlines have still been sloping upwards.
Of course, 2/3 of a season is still a small sample, and it is certainly possible that this is variance, but just because something *could* be a statistical artifact doesn’t mean that it is *likely* to be.  In fact, one problem with statistically-oriented sports analysis is that its proponents can sometimes be overly (even dogmatically) committed to neutral or variance-based explanations for observed anomalies, even when the conventional explanation is highly plausible (ironically, I think this happens because people often apply Bayes’ Theorem-style reasoning implicitly, even if the statisticians forget to apply it explicitly).  I believe this is one of those situations.

That said, whether it stems from diminishing skills or ongoing psychological unrest, a significant and continuing Tiger decline is still a realistic possibility.  From the chart above, it should be clear that Tiger circa 2009 shouldn’t have any problem blowing past Jack, but what would happen if he were a different Tiger?  Fortunately for him, he has a long way to drop before being a non-factor.  For comparison, let’s look at the same graph as above, but for the 2nd-best player of the recent era, Phil Mickelson:

tiger, phil and jack_3492_image003

Mickleson’s averages are 9.2%, 35.8%, and 5.6%, respectively.  Half a Tiger would still be much better.  Of course, Mickelson has won 4 majors in recent years, but has still been much worse than Tiger: over that period his averages are 12.2%, 40.1%, and 14.3%.  It should not go without notice that if Tiger transformed into Phil Mickelson, played 7 more years, and won majors at the same rate that Mickelson has over the last 7 (Phil is about 6 years older), it would put him at exactly the magic number: 18.

Finally, let’s look at the graph for the man himself — Jack Nicklaus:

tiger, phil and jack_3492_image004

Note: For years prior to 1970, only official PGA Tour events are included.
Jack’s averages over this span (from the year he turned pro to the year of his final major) are 15.5%, 63.4%, and 18%.  These numbers are slightly understated, since in truth Jack was well past his prime when he won the Masters in ’86.  As we can see, Jack began to decline significantly around 1979, but still won 3 more majors after that point.  A similar pattern for Woods would put him at 17, and at least in contention for the record.  On the other hand, not everyone is Jack Nicklaus.  Nicklaus, incredibly, won a higher percentage of majors than tournaments overall.  This is especially apparent in his post-decline career:  note the small amount of blue compared to the amount of green from 1979 on.  Whether he just ran well in the right spots, or whether he had preternatural competitive spirit, not even Tiger Woods can count on having Nicklaus’s knack for winning majors.  So if Tiger hopes to catch up, he had better be out of his mind.

The Case for Dennis Rodman, Part 0/4—Outline

[Note: Forgive the anachronisms, but since this page is still the landing-spot for a lot of new readers, I’ve added some links to the subsequent articles into this post. There is also a much more comprehensive outline of the series, complete with a table of relevant points and a selection of charts and graphs available in The Case for Dennis Rodman: Guide.]

If you’ve ever talked to me about sports, you probably know that one of my pet issues (or “causes” as my wife calls them), is proving the greatness of Dennis Rodman.  I admit that since I first saw Rodman play — and compete, and rebound, and win championships — I have been fascinated.  Until recently, however, I thought of him as the ultimate outlier: someone who seemed to have unprecedented abilities in some areas, and unprecedented lack of interest in others.  He won, for sure, but he also played for the best teams in the league.  His game was so unique — yet so enigmatic — that despite the general feeling that there was something remarkable going on there, opinions about his ultimate worth as a basketball player varied immensely — as they continue to today.  In this four-part series, I will attempt to end the argument.

While there may be room for reasonable disagreement about his character, his sportsmanship, or how and whether to honor his accomplishments, my research and analysis has led me to believe — beyond a reasonable doubt — that Rodman is one of the most undervalued players in NBA history.  From an analytical perspective, leaving him off of the Hall of Fame nominee list this past year was truly a crime against reason.  But what makes this issue particularly interesting to me is that it cuts “across party lines”:  the conventional wisdom and the unconventional wisdom both get it very wrong.  Thus, by examining the case of Dennis Rodman, not only will I attempt to solve a long-standing sports mystery, but I will attempt to illustrate a few flaws with the modern basketball-analytics movement.

In this post I will outline the major prongs of my argument.  But first, I would like to list the frequently-heard arguments I will *not* be addressing:

  • “Rodman won 5 NBA titles!  Anyone who is a starter on 5 NBA champions deserves to be in the Hall of Fame!”  [As an intrinsic matter, I really don’t care that he won 5 NBA championships, except inasmuch as I’d like to know how much he actually contributed.  I.e., is he more like Robert Horry, or more like Tim Duncan?]
  • “Rodman led the league in rebounding *7 times*:  Anyone who leads the league in a major statistical category that many times deserves to be in the Hall of Fame!” [This is completely arbitrary.  Rodman’s rebounding prowess is indeed an important factor in this inquiry, but “leading the league” in some statistical category has no intrinsic value, except inasmuch as it actually contributed to winning games.]
  • “Rodman was a great defender!  He could effectively defend Michael Jordan and Shaquille O’Neal in their primes!  Who else could do that?” [Actually, I love this argument as a rhetorical matter, but unfortunately I think defensive skill is still too subjective to be quantified directly. Of course all of his skills — or lack thereof — are relevant to the bottom line.]
  • “Rodman was such an amazing rebounder, despite being only 6 foot 7!” [Who cares how tall he was, seriously?]

Rather, in the subsequent parts in this series, these are the arguments I will be making:

  1. Rodman was a better rebounder than you think: Rodman’s ability as a rebounder is substantially underrated.  Rodman was a freak, and is unquestionably — by a wide margin — the greatest rebounder in NBA history.  In this section I will use a number of statistical metrics to demonstrate this point (preview factoid: Kevin Garnett’s career rebounding percentage is lower than Dennis Rodman’s career *offensive* rebounding percentage).  I will also specifically rebut two common counterarguments: 1) that Rodman “hung out around the basket”, and only got so many rebounds because he focused on it exclusively [he didn’t], and 2) that Bill Russell and Wilt Chamberlain were better rebounders [they weren’t].
  2. Rodman’s rebounding was more valuable than you think: The value of Rodman’s rebounding ability is substantially underrated.  Even/especially by modern efficiency metrics that do not accurately reward the marginal value of extra rebounds.  Conversely, his lack of scoring ability is vastly overrated, even/especially by modern efficiency metrics that inaccurately punish the marginal value of not scoring.
  3. Rodman was a bigger winner than you think: By examining Rodman’s +/- with respect to wins and losses — i.e., comparing his teams winning percentages with him in the lineup vs. without him in the lineup — I will show that the outcomes suggest he had elite-level value.  Contrary to common misunderstanding, this actually becomes *more* impressive after adjusting for the fact that he played on very good teams to begin with.
  4. Rodman belongs in the Hall of Fame [or not]: [Note this section didn’t go off as planned.  Rodman was actually selected for the HoF before I finished the series, so section 4 is devoted to slightly more speculative arguments about Rodman’s true value.]  Having wrapped up the main quantitative prongs, I will proceed to audit the various arguments for and against Rodman’s induction into the Hall of Fame.  I believe that both sides of the debate are rationalizable — i.e., there exist reasonable sets of preferences that would justify either outcome.  Ultimately, however, I will argue that the most common articulated preferences, when combined with a proper understanding of the available empirical evidence, should compel one to support Rodman‘s induction.  To be fair, I will also examine which sets of preferences could rationally compel you to the opposite conclusion.

Stay tuned….

Hidden Sources of Error—A Back-Handed Defense of Football Outsiders

So I was catching up on some old blog-reading and came across this excellent post by Brian Burke, Pre-Season Predictions Are Still Worthless, showing that the Football Outsiders pre-season predictions are about as accurate as picking 8-8 for every team would be, and that a simple regression based on one variable — 6 wins plus 1/4 of the previous season’s wins — is significantly more accurate

While Brian’s anecdote about Billy Madison humorously skewers Football Outsiders, it’s not entirely fair, and I think these numbers don’t prove as much as they may appear to at first glance.  Sure, a number of conventional or unconventional conclusions people have reached are probably false, but the vast majority of sports wisdom is based on valid causal inferences with at least a grain of truth.  The problem is that people have a tendency to over-rely on the various causes and effects that they observe directly, conversely underestimating the causes they cannot see.

So far, so obvious.  But these “hidden” causes can be broken down further, starting with two main categories, which I’ll call “random causes” and “counter-causes”:

“Random causes” are not necessarily truly random, but do not bias your conclusions in any particular direction.  It is the truly random combined with the may-as-well-be-random, and generates the inherent variance of the system.

“Counter causes” are those which you may not see, but which relate to your variables in ways that counteract your inferences.  The salary cap in the NFL is one of the most ubiquitous offenders:  E.g. an analyst sees a very good quarterback, and for various reasons believes that QB with a particular skill-set is worth an extra 2 wins per season.  That QB is obtained by an 8-8 team in free agency, so the analyst predicts that team will win 10 games.  But in reality, the team that signed that quarterback had to pay handsomely for that +2 addition, and may have had to cut 2 wins worth of players to do it.  If you imagine this process repeating itself over time, you will see that the correlation between QB’s with those skills and their team’s actual winrate may be small or non-existent (in reality, of course, the best quarterbacks are probably underpaid relative to their value, so this is not a problem).  In closed systems like sports, these sorts of scenarios crop up all the time, and thus it is not uncommon for a perfectly valid and logical-seeming inference to be, systematically, dead wrong (by which I mean that it not only leads to an erroneous conclusion in a particular situation, but will lead to bad predictions routinely).

So how does this relate to Football Outsiders, and how does it amount to a defense of their predictions?  First, I think the suggestion that FO may have created “negative knowledge” is demonstrably false:  The key here is not to be fooled by the stat that they could barely beat the “coma patient” prediction of 8-8 across the board.  8 wins is the most likely outcome for any team ex ante, and every win above or below that number is less and less likely.  E.g., if every outcome were the result of a flip of a coin, your best strategy would be to pick 8-8 for every team, and picking *any* team to go 10-6 or 12-4 would be terrible.  Yet Football Outsiders (and others) — based on their expertise — pick many teams to have very good and very bad records.  The fact that they break even against the coma patient shows that their expertise is worth something.

Second, I think there’s no shame in being unable to beat a simple regression based on one extremely probative variable:  I’ve worked on a lot of predictive models, from linear regressions to neural networks, and beating a simple regression can be a lot of work for marginal gain (which, combined with the rake, is the main reason that sports-betting markets can be so tough).

Yet, getting beaten so badly by a simple regression is a definite indicator of systematic error — particularly since there is nothing preventing Football Outsiders from using a simple regression to help them make their predictions. Now, I suspect that FO is underestimating football variance, especially the extent of regression to the mean.  But this is a blanket assumption that I would happily apply to just about any sports analyst — quantitative or not — and is not really of interest.  However, per the distinction I made above, I believe FO is likely underestimating the “counter causes” that may temper the robustness of their inferences without necessarily invalidating them entirely.  A relatively minor bias in this regard could easily lead to a significant drop in overall predictive performance, for the same reason as above:  the best and worst records are by far the least likely to occur.  Thus, *ever* predicting them, and expecting to gain accuracy in the process, requires an enormous amount of confidence.  If Football Outsiders has that degree of confidence, I would wager that it is misplaced.

Player Efficiency Ratings—A Bold ESPN Article Gets it Exactly Wrong

Tom Haberstroh, credited as a “Special to ESPN Insider” in his byline, writes this 16 paragraph article, about how “Carmelo Anthony is not an elite player.” Haberstroh boldly — if not effectively — argues that Carmelo’s high shot volume and correspondingly pedestrian Player Efficiency Rating suggests that not only is ‘Melo not quite the superstar his high scoring average makes him out to be, but that he is not even worth the max contract he will almost certainly get next summer.  Haberstroh further argues that this case is, in fact, a perfect example of why people should stop paying as much attention to Points Per Game and start focusing instead on PER’s.

I have a few instant reactions to this article that I thought I would share:

  1. Anthony may or may not be overrated, and many of Haberstroh’s criticisms on this front are valid — e.g., ‘Melo does have a relatively low shooting percentage — but his evidence is ultimately inconclusive.
  2. Haberstroh’s claim that Anthony is not worth a max contract is not supported at all.  How many players are “worth” max contracts?  The very best players, even with their max contracts, are incredible value for their teams (as evidenced by the fact that they typically win).  Corollary to this, there are almost certainly a number of players who are *not* the very best, who nevertheless receive max contracts, and who still give their teams good value at their price.  (This is not to mention the fact that players like Anthony, even if they are overrated, still sell jerseys, increase TV ratings, and put butts in seats.)
  3. One piece of statistical evidence that cuts against Haberstroh’s argument is that Carmelo has a very solid win/loss +/- with the Nuggets over his career.  With Melo in the lineup, Denver has won 59.9% of their games (308-206), and without him in the lineup over that period, they have won 50% (30-30).  While 10% may not sound like much, it is actually elite and compares favorably to the win/loss +/- of many excellent players, such as Chris Bosh (9.1%, and one of the top PER players in the league) and Kobe Bryant (4.1%).  All of these numbers should be treated with appropriate skepticism due to the small sample sizes, but they do trend accurately.

But the main point I would like to make is that — exactly opposite Haberstrom — I believe Carmelo Anthony is, in fact, a good example of why people should be *more* skeptical of PER’s as the ultimate arbiter of player value. One of the main problems with PER is that it attempts to account for whether a shot’s outcome is good or bad relative to the average shot, but it doesn’t account for whether the outcome is good or bad relative to the average shot taken in context.  The types of shots a player is asked to take vary both dramatically and systematically, and can thus massively bias his PER.  Many “bad” shots, for example, are taken out of necessity: when the clock is winding down and everyone is defended, someone has to chuck it up.  In that situation, “bad” shooting numbers may actually be good, if they are better than what a typical player would have done.  If the various types of shots were distributed equally, this would all average out in the end, and would only be relevant as a matter of precision.  But in reality, certain players are asked to take the bad shot more often that others, and those players are easy enough to find: they tend to be the best players on their teams.

This doesn’t mean I think PER is useless, or irreparably broken.  Among other things, I think it could be greatly improved by incorporating shot-clock data as a proxy to model the expected value of each shot (which I hope to write more about in the future).  However, in its current form it is far from being the robust and definitive metric that many basketball analysts seem to believe.  Points Per Game may be an even more useless metric — theoretically — but at least it’s honest.

Favre’s Not-So-Bad Interception

This post on Advanced NFL Stats (which is generally my favorite NFL blog), quantifying the badness of Brett Favre’s interception near the end of regulation, is somewhat revealing of a subtle problem I’ve noticed with simple win-share analysis of football plays.  To be sure, Favre’s interception “cost” the Vikings a chance to win the game in regulation, and after a decent return, even left a small chance of the Saints winning before overtime.  So in an absolute sense, it was a “bad” play, which is reflected by Brian’s conclusion that it cost the Vikings .38 wins.  But I think there are a couple of issues with that figure that are worth noting:

First, while it may have cost .38 wins versus the start of that play, a more important question might be how bad it was on the spectrum of possible outcomes.  For example, an incomplete pass still would not have left the Vikings in a great position, as they were outside of field goal range with enough time on the clock to run probably only one more play before making a FG attempt.  Likewise, if they had run the ball instead — with the Saints seemingly keyed up for the run — it is unlikely that they would have picked up the necessary yards to end the game there either.  It is important to keep in mind that many other negative outcomes, like a sack or a run for minus yards would be nearly as disastrous as the interception. In fact, by the nature of the position the Vikings were in, most “bad” outcomes would be hugely bad (in terms of win-shares), and most “good” outcomes would be hugely good.

The formal point here is that while Favre’s play was bad in absolute terms, it wasn’t much worse than a large percentage of other possible outcomes.  For an extreme comparison, imagine a team with 4th and goal at the 1 with 1 second left in the game, needing a touchdown to win, and the quarterback throws an incomplete pass.  The win-shares system would grade this as a terrible mistake!  I would suggest that a better way to quantify this type of result might be to ask the question: how many standard deviations worse than the mean was the outcome?  In the 4th down case, I think it’s hard to make either a terrible mistake or an incredible play, because practically any outcome is essentially normal.  Similarly, in the Favre case, while the interception was a highly unfavorable outcome, it wasn’t nearly as drastic as the basic win-shares analysis might make it seem.

Second, to rate this play based on the actual result is, shall we say, a little results-oriented.  As should be obvious, a completion of that length would have been an almost sure victory for the Vikings, so it’s unclear whether Favre’s throw was even a bad decision.  Considering they were out of field goal range at the start of the play, if the distribution of outcomes of the pass were 40% completions, 40% incompletions, and 20% interceptions, it would easily have been a win-maximizing gamble.  Regardless of the exact distribution ex ante, the -.38 wins outcome is way on the low end of the possible outcomes, especially considering that it reflects a longer than average return on the pick.  As should be obvious, many interceptions are the product of good quarterbacking decisions (I may write separately at a later point on the topic “Show me a quarterback that doesn’t throw interceptions, and I’ll show you a sucky quarterback”), and in this case it is not clear to me which type this was.

This should not be taken as a criticism of Advanced NFL Stats’ methodology. I’m certain Brian understands the difference between the resulting win-shares a play produces and the question of whether that result was the product of a poor decision.  When it comes to 4th downs, for example, everyone with even an inkling of analytical skill understands that Belichick’s infamously going for it against the Colts was definitely the win-maximizing play, even though it had a terrible result.  It doesn’t take a very big leap from there to realize that the same reasoning applies equally to players’ decisions.

My broader agenda that these issues partly relate to (which I will hopefully expand on significantly in the future) is that while I believe win-share analysis is the best — and in some sense the only — way to evaluate football decisions, I am also concerned with the many complications that arise when attempting to expand its purview to player evaluation.

A Decade of Hot Teams in the Playoffs

San Diego and Dallas were the Super Bowl-pick darlings of many sports writers and commentators heading into this postseason, in no small part because they were the two “hottest” teams in the NFL, having finished the regular season with the two longest winning streaks of any contenders (at 11 and 3, respectively).  Routinely, year after year, I think that the prediction-makers in the media overvalue season-ending rushes.  My reasons for believing this include:

  1. The seeding of many teams are frequently sealed or near-sealed weeks before the playoffs begin, leaving them with little incentive to compete fully.
  2. Teams that are eliminated from playoff contention may be dispirited, and/or players may not be giving 100% effort to winning, instead focusing on padding statistics or avoiding injury.
  3. When non-contenders do give maximum effort, it may more often be to play the role of “spoiler,” or to save face for their season by trying to beat the most high-profile contenders.
  4. Variance.

So the broader question to ask is “does late-season success correlate any more strongly with postseason performance than middle or early season success?”  But in this case, I’m interested only in winning streaks — i.e., the “hottest” teams, for which any relevant sample would probably be too small to draw any meaningful conclusions.  However, I thought it might be interesting to look at how the teams with the longest winning streaks have performed in the last decade:

2009:
AFC: San Diego: Won 11, lost divisional
NFC: Dallas: Won 3, lost divisional

2008:
AFC: Indianapolis: Won 9, lost wildcard
NFC: Atlanta: Won 3, lost wildcard

2007:
AFC: New England: Won 16, lost Superbowl
NFC: Washington: Won 4, lost wildcard

2006:
AFC: San Diego:  Won 10, lost divisional
NFC: Philadelphia: Won 5, lost divisional

2005:
NFC: Redskins: Won 5, lost divisional
AFC: Tie: Won 4: Denver: lost AFC championship; Pittsburg: won Superbowl
(the hottest team overall, Miami, won 6 but didn’t make the playoffs)

2004:
NFC: Pittsburg: Won 14, lost AFC championship
AFC: Tie: Won 2: Seattle: lost Superbowl; St. Louis: lost divisional; Green Bay: lost wildcard
2003:
AFC: New England: Won 12, won Superbowl
NFC: Green Bay: Won 4, lost divisional

2002:
AFC: Tennessee: Won 5, lost AFC championship
NFC: NY Giants: Won 4, lost wildcard

2001:
AFC: Patriots: Won 6, won Superbowl
NFC: Rams: Won 6, lost Superbowl

2000:
AFC: Baltimore: Won 7, won Superbowl
NFC: NY Giants: Won 5, lost Superbowl

From 2006 on, the hottest teams have obviously done terribly, with the undefeated Patriots being the only team to make it out of the divisional round.  Prior to that, the results seem more normal:  In 2005, Pittsburg won the Superbowl after tying for the longest winning streak among AFC playoff teams (though they trailed Washington in the NFC and Miami who didn’t make the playoffs).  New England won the Superbowl as the hottest team twice: in 2001 and 2003 — although both times they were one of the top seeds in their conference as well.  The last hottest team to play on wildcard weekend AND win the Superbowl was the Baltimore Ravens in 2000.

So what does that tell us?  Well, a decent anecdote — and not much more.  The sample is small and the numbers inconclusive.  On the one hand, the particular species of Cinderella team that gets predicted to win the Superbowl year after year by some — one that starts the season weakly but catches fire late and rides their momentum to the championship — has been a rarity (and going back further, it doesn’t get any more common).  On the other hand, if you simply picked the hottest team to win the Superbowl every year in this decade, you would have correctly picked 3 winners out of 10, which would not be a terrible record.

My Favorite Sports?

See the “about” page for information about the purpose of this blog.

At this point in time, my favorite sport, and the one I have done the most research on, is NFL Football.  After that, the other sports I follow fairly closely are, in approximate order: NBA Basketball, Tennis, Golf, Cycling, Olympic Sports, NCAA Football, Major League Baseball, MMA/Boxing, Horse Racing, and Poker (qua “sport”).  Sports I mostly do not follow include Hockey, College Basketball, WNBA, and Bassmaster.

This should not be taken as a promise that I will post about all of the sports I follow, nor that I won’t post on any of the sports I don’t:  I generally choose topics as they strike my fancy, or when they relate to some broader research I’m undertaking.  Thus I can really only guarantee that I will post about football and basketball regularly.  So if you’re looking for a kickass NHL blog, this isn’t going to be it.  On the other hand, if you’re a die-hard NHL fan that loves sports analysis generally, you may still appreciate what I have to offer — and who knows, maybe one day something interesting about Canada’s game will slip out.